Change of Multiple-Layered Phospholipid Vesicles Produced by Electrostatic Deposition of Polymers during Storage
In this study, 1 wt% lecithin (–), chitosan (+), and λ-carrageenan (–) were prepared to manufacture multiple-layered liposomes with optimal formulations developed in a previous study by using layer-by-layer electrostatic deposition. We observed their particle size, ζ-potential, sedimentation behavio...
Gespeichert in:
Veröffentlicht in: | International journal of food engineering 2016-10, Vol.12 (8), p.763-771 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, 1 wt% lecithin (–), chitosan (+), and λ-carrageenan (–) were prepared to manufacture multiple-layered liposomes with optimal formulations developed in a previous study by using layer-by-layer electrostatic deposition. We observed their particle size, ζ-potential, sedimentation behavior, and microstructure for 6 weeks. Multiple-layered liposomes were quenched with calcein to evaluate stability in terms of factors such as encapsulation efficiency and released amount of calcein. The particle size of multi-layered liposomes increased with storage periods and the ζ-potential of multiple-layered liposomes gained a neutral charge. Interestingly, negatively charged layered liposomes were smaller than positively charged layered liposomes and showed a lower polydispersity index. Moreover, the ζ-potential did not apparently change compared to positively charged layered liposomes. For the calcein release study, multiple-layered liposomes significantly sustained quenched calcein more than that observed using non-layered liposomes. This study showed that it was possible to increase the thickness of the liposome surface and to manipulate its charge using chitosan and λ-carrageenan through electrostatic deposition. Results showed that manufacturing negatively charged multiple-layer (over 4-layer) liposomes with charged biopolymer improved the physicochemical stability of liposomes. |
---|---|
ISSN: | 2194-5764 1556-3758 |
DOI: | 10.1515/ijfe-2016-0105 |