Determination of log moisture content using ground penetrating radar (GPR). Part 1. Partial least squares (PLS) method

Ground penetrating radar (GPR) is a handheld system showing good potential for the real-time and nondestructive characterization of wood moisture content (MC). However, measurements performed over logs can be challenging because of their curved surface that can affect the GPR signal. In this study,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Holzforschung 2015-11, Vol.69 (9), p.1117-1123
Hauptverfasser: Hans, Guillaume, Redman, David, Leblon, Brigitte, Nader, Joseph, La Rocque, Armand
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1123
container_issue 9
container_start_page 1117
container_title Holzforschung
container_volume 69
creator Hans, Guillaume
Redman, David
Leblon, Brigitte
Nader, Joseph
La Rocque, Armand
description Ground penetrating radar (GPR) is a handheld system showing good potential for the real-time and nondestructive characterization of wood moisture content (MC). However, measurements performed over logs can be challenging because of their curved surface that can affect the GPR signal. In this study, the MC of thawed and frozen logs was estimated for three species (quaking aspen, balsam poplar, and black spruce) using the full GPR signals and the partial least squares (PLS) regression method. The signal was acquired from the cross-section (CS) and through the bark (TB) of the logs with and without an aluminum plate placed under the log. The full GPR signal does not provide better log MC prediction accuracy for small logs compared with the early-time GPR signal. The information about the shape and diameter of the log is contained in the direct and reflected waves of the GPR signal. CS models provided more accurate log MC prediction (RMSE =7–25%) than TB models (RMSE =6–40%) for the hardwood species. Thawed and frozen log models showed similar performances. This study demonstrates that GPR in combination with PLS regression is suitable for predicting log MC in the field.
doi_str_mv 10.1515/hf-2014-0286
format Article
fullrecord <record><control><sourceid>walterdegruyter_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1515_hf_2014_0286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1515_hf_2014_02866991117</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-2bfe2a64e4aa2df34d24ecd747214fc3f6885c4d53c01df980229112496090913</originalsourceid><addsrcrecordid>eNptkFtLAzEQhYMoWKtv_oA8tuDW3PaGT1K1CgWLF_BtiZvJdstuUpOs0n9vSn306cwM58wMH0KXlMxoStPrtU4YoSIhrMiO0IgKnieCi49jNCKEFgkvODlFZ95vYpsSTkfo-w4CuL41MrTWYKtxZxvc29aHwQGurQlgAh58axrcODsYhbdgILgYiCMnlXR4sli9TGd4JV3A9KCt7HAH0gfsvwbpwOPJavk6xT2EtVXn6ETLzsPFn47R-8P92_wxWT4vnua3y6RmRR4S9qmByUyAkJIpzYViAmqVi5xRoWuus6JIa6FSXhOqdFkQxkpKmSgzUpKS8jG6OuytnfXega62ru2l21WUVHtm1VpXe2bVnlm03xzsP7KLWBQ0btjFotrYwZn46L-xrIw3ac5_AfZ-cic</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Determination of log moisture content using ground penetrating radar (GPR). Part 1. Partial least squares (PLS) method</title><source>De Gruyter journals</source><creator>Hans, Guillaume ; Redman, David ; Leblon, Brigitte ; Nader, Joseph ; La Rocque, Armand</creator><creatorcontrib>Hans, Guillaume ; Redman, David ; Leblon, Brigitte ; Nader, Joseph ; La Rocque, Armand</creatorcontrib><description>Ground penetrating radar (GPR) is a handheld system showing good potential for the real-time and nondestructive characterization of wood moisture content (MC). However, measurements performed over logs can be challenging because of their curved surface that can affect the GPR signal. In this study, the MC of thawed and frozen logs was estimated for three species (quaking aspen, balsam poplar, and black spruce) using the full GPR signals and the partial least squares (PLS) regression method. The signal was acquired from the cross-section (CS) and through the bark (TB) of the logs with and without an aluminum plate placed under the log. The full GPR signal does not provide better log MC prediction accuracy for small logs compared with the early-time GPR signal. The information about the shape and diameter of the log is contained in the direct and reflected waves of the GPR signal. CS models provided more accurate log MC prediction (RMSE =7–25%) than TB models (RMSE =6–40%) for the hardwood species. Thawed and frozen log models showed similar performances. This study demonstrates that GPR in combination with PLS regression is suitable for predicting log MC in the field.</description><identifier>ISSN: 0018-3830</identifier><identifier>EISSN: 1437-434X</identifier><identifier>DOI: 10.1515/hf-2014-0286</identifier><language>eng</language><publisher>De Gruyter</publisher><subject>ground penetrating radar (GPR) ; log frozen ; moisture content (MC) ; nondestructive monitoring ; permittivity ; PLS regression ; wood</subject><ispartof>Holzforschung, 2015-11, Vol.69 (9), p.1117-1123</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c287t-2bfe2a64e4aa2df34d24ecd747214fc3f6885c4d53c01df980229112496090913</citedby><cites>FETCH-LOGICAL-c287t-2bfe2a64e4aa2df34d24ecd747214fc3f6885c4d53c01df980229112496090913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/hf-2014-0286/pdf$$EPDF$$P50$$Gwalterdegruyter$$H</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/hf-2014-0286/html$$EHTML$$P50$$Gwalterdegruyter$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,66497,68281</link.rule.ids></links><search><creatorcontrib>Hans, Guillaume</creatorcontrib><creatorcontrib>Redman, David</creatorcontrib><creatorcontrib>Leblon, Brigitte</creatorcontrib><creatorcontrib>Nader, Joseph</creatorcontrib><creatorcontrib>La Rocque, Armand</creatorcontrib><title>Determination of log moisture content using ground penetrating radar (GPR). Part 1. Partial least squares (PLS) method</title><title>Holzforschung</title><description>Ground penetrating radar (GPR) is a handheld system showing good potential for the real-time and nondestructive characterization of wood moisture content (MC). However, measurements performed over logs can be challenging because of their curved surface that can affect the GPR signal. In this study, the MC of thawed and frozen logs was estimated for three species (quaking aspen, balsam poplar, and black spruce) using the full GPR signals and the partial least squares (PLS) regression method. The signal was acquired from the cross-section (CS) and through the bark (TB) of the logs with and without an aluminum plate placed under the log. The full GPR signal does not provide better log MC prediction accuracy for small logs compared with the early-time GPR signal. The information about the shape and diameter of the log is contained in the direct and reflected waves of the GPR signal. CS models provided more accurate log MC prediction (RMSE =7–25%) than TB models (RMSE =6–40%) for the hardwood species. Thawed and frozen log models showed similar performances. This study demonstrates that GPR in combination with PLS regression is suitable for predicting log MC in the field.</description><subject>ground penetrating radar (GPR)</subject><subject>log frozen</subject><subject>moisture content (MC)</subject><subject>nondestructive monitoring</subject><subject>permittivity</subject><subject>PLS regression</subject><subject>wood</subject><issn>0018-3830</issn><issn>1437-434X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNptkFtLAzEQhYMoWKtv_oA8tuDW3PaGT1K1CgWLF_BtiZvJdstuUpOs0n9vSn306cwM58wMH0KXlMxoStPrtU4YoSIhrMiO0IgKnieCi49jNCKEFgkvODlFZ95vYpsSTkfo-w4CuL41MrTWYKtxZxvc29aHwQGurQlgAh58axrcODsYhbdgILgYiCMnlXR4sli9TGd4JV3A9KCt7HAH0gfsvwbpwOPJavk6xT2EtVXn6ETLzsPFn47R-8P92_wxWT4vnua3y6RmRR4S9qmByUyAkJIpzYViAmqVi5xRoWuus6JIa6FSXhOqdFkQxkpKmSgzUpKS8jG6OuytnfXega62ru2l21WUVHtm1VpXe2bVnlm03xzsP7KLWBQ0btjFotrYwZn46L-xrIw3ac5_AfZ-cic</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Hans, Guillaume</creator><creator>Redman, David</creator><creator>Leblon, Brigitte</creator><creator>Nader, Joseph</creator><creator>La Rocque, Armand</creator><general>De Gruyter</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20151101</creationdate><title>Determination of log moisture content using ground penetrating radar (GPR). Part 1. Partial least squares (PLS) method</title><author>Hans, Guillaume ; Redman, David ; Leblon, Brigitte ; Nader, Joseph ; La Rocque, Armand</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-2bfe2a64e4aa2df34d24ecd747214fc3f6885c4d53c01df980229112496090913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>ground penetrating radar (GPR)</topic><topic>log frozen</topic><topic>moisture content (MC)</topic><topic>nondestructive monitoring</topic><topic>permittivity</topic><topic>PLS regression</topic><topic>wood</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hans, Guillaume</creatorcontrib><creatorcontrib>Redman, David</creatorcontrib><creatorcontrib>Leblon, Brigitte</creatorcontrib><creatorcontrib>Nader, Joseph</creatorcontrib><creatorcontrib>La Rocque, Armand</creatorcontrib><collection>CrossRef</collection><jtitle>Holzforschung</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hans, Guillaume</au><au>Redman, David</au><au>Leblon, Brigitte</au><au>Nader, Joseph</au><au>La Rocque, Armand</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of log moisture content using ground penetrating radar (GPR). Part 1. Partial least squares (PLS) method</atitle><jtitle>Holzforschung</jtitle><date>2015-11-01</date><risdate>2015</risdate><volume>69</volume><issue>9</issue><spage>1117</spage><epage>1123</epage><pages>1117-1123</pages><issn>0018-3830</issn><eissn>1437-434X</eissn><abstract>Ground penetrating radar (GPR) is a handheld system showing good potential for the real-time and nondestructive characterization of wood moisture content (MC). However, measurements performed over logs can be challenging because of their curved surface that can affect the GPR signal. In this study, the MC of thawed and frozen logs was estimated for three species (quaking aspen, balsam poplar, and black spruce) using the full GPR signals and the partial least squares (PLS) regression method. The signal was acquired from the cross-section (CS) and through the bark (TB) of the logs with and without an aluminum plate placed under the log. The full GPR signal does not provide better log MC prediction accuracy for small logs compared with the early-time GPR signal. The information about the shape and diameter of the log is contained in the direct and reflected waves of the GPR signal. CS models provided more accurate log MC prediction (RMSE =7–25%) than TB models (RMSE =6–40%) for the hardwood species. Thawed and frozen log models showed similar performances. This study demonstrates that GPR in combination with PLS regression is suitable for predicting log MC in the field.</abstract><pub>De Gruyter</pub><doi>10.1515/hf-2014-0286</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-3830
ispartof Holzforschung, 2015-11, Vol.69 (9), p.1117-1123
issn 0018-3830
1437-434X
language eng
recordid cdi_crossref_primary_10_1515_hf_2014_0286
source De Gruyter journals
subjects ground penetrating radar (GPR)
log frozen
moisture content (MC)
nondestructive monitoring
permittivity
PLS regression
wood
title Determination of log moisture content using ground penetrating radar (GPR). Part 1. Partial least squares (PLS) method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A32%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-walterdegruyter_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20log%20moisture%20content%20using%20ground%20penetrating%20radar%20(GPR).%20Part%201.%20Partial%20least%20squares%20(PLS)%20method&rft.jtitle=Holzforschung&rft.au=Hans,%20Guillaume&rft.date=2015-11-01&rft.volume=69&rft.issue=9&rft.spage=1117&rft.epage=1123&rft.pages=1117-1123&rft.issn=0018-3830&rft.eissn=1437-434X&rft_id=info:doi/10.1515/hf-2014-0286&rft_dat=%3Cwalterdegruyter_cross%3E10_1515_hf_2014_02866991117%3C/walterdegruyter_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true