Causality and Modelling in the Sciences: Introduction

The advantage of examining causality from the perspective of modelling is thus that it puts us naturally closer to the practice of the sciences. This means being able to set up an interdisciplinary dialogue that contrasts and compares modelling practices in different fields, say economics and biolog...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Disputatio (Lisbon, Portugal) Portugal), 2017-12, Vol.9 (47), p.423-427
Hauptverfasser: Jiménez-Buedo, María, Russo, Federica
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 427
container_issue 47
container_start_page 423
container_title Disputatio (Lisbon, Portugal)
container_volume 9
creator Jiménez-Buedo, María
Russo, Federica
description The advantage of examining causality from the perspective of modelling is thus that it puts us naturally closer to the practice of the sciences. This means being able to set up an interdisciplinary dialogue that contrasts and compares modelling practices in different fields, say economics and biology, medicine and statistics, climate change and physics. It also means that it helps philosophers looking for questions that go beyond the narrow ‘what-is-causality’ or ‘what-are-relata’ and thus puts causality right at the centre of a complex crossroad: epistemology/methodology, metaphysics, politics/ethics. This special issue collects nine papers that touch upon various scientific fields, from system biology to medicine to quantum mechanics to economics, and different questions, from explanation and prediction to the role of both true and false assumptions in modelling.
doi_str_mv 10.1515/disp-2017-0013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1515_disp_2017_0013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3156562676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-4f2c5af39657fd3e89650ce17b7347741c106fcadd6c65677d0ec014a9d26efb3</originalsourceid><addsrcrecordid>eNptkEtLAzEUhYMoWKtb1wOuo3lnKm6k-ChUXKjgLqR51JQxU5MM0n9vhgpuXN2zuN858AFwjtEl5phf2ZC3kCAsIUKYHoAJwS2BpJX8EExQKykURLwfg5OcNwgxijGdAD7XQ9ZdKLtGR9s89dZ1XYjrJsSmfLjmxQQXjcvXzSKW1NvBlNDHU3DkdZfd2e-dgrf7u9f5I1w-Pyzmt0toKOYFMk8M157OBJfeUtfWgIzDciUpk5Jhg5HwRlsrjOBCSoucQZjpmSXC-RWdgot97zb1X4PLRW36IcU6qepARYiQon5d7r9M6nNOzqttCp867RRGalSjRjVqVKNGNRW42QPfuisuWbdOw66Gv_b_wRmTjFD6A3pdak4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3156562676</pqid></control><display><type>article</type><title>Causality and Modelling in the Sciences: Introduction</title><source>De Gruyter Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Jiménez-Buedo, María ; Russo, Federica</creator><creatorcontrib>Jiménez-Buedo, María ; Russo, Federica</creatorcontrib><description>The advantage of examining causality from the perspective of modelling is thus that it puts us naturally closer to the practice of the sciences. This means being able to set up an interdisciplinary dialogue that contrasts and compares modelling practices in different fields, say economics and biology, medicine and statistics, climate change and physics. It also means that it helps philosophers looking for questions that go beyond the narrow ‘what-is-causality’ or ‘what-are-relata’ and thus puts causality right at the centre of a complex crossroad: epistemology/methodology, metaphysics, politics/ethics. This special issue collects nine papers that touch upon various scientific fields, from system biology to medicine to quantum mechanics to economics, and different questions, from explanation and prediction to the role of both true and false assumptions in modelling.</description><identifier>ISSN: 0873-626X</identifier><identifier>EISSN: 2182-2875</identifier><identifier>EISSN: 0873-626X</identifier><identifier>DOI: 10.1515/disp-2017-0013</identifier><language>eng</language><publisher>Lisbon: Sciendo</publisher><subject>causal explanation ; Causality ; modelling ; scientific models</subject><ispartof>Disputatio (Lisbon, Portugal), 2017-12, Vol.9 (47), p.423-427</ispartof><rights>2017. This work is published under http://creativecommons.org/licenses/by-nc-nd/3.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://sciendo.com/pdf/10.1515/disp-2017-0013$$EPDF$$P50$$Gwalterdegruyter$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://sciendo.com/article/10.1515/disp-2017-0013$$EHTML$$P50$$Gwalterdegruyter$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,27903,27904,75910,75911</link.rule.ids></links><search><creatorcontrib>Jiménez-Buedo, María</creatorcontrib><creatorcontrib>Russo, Federica</creatorcontrib><title>Causality and Modelling in the Sciences: Introduction</title><title>Disputatio (Lisbon, Portugal)</title><description>The advantage of examining causality from the perspective of modelling is thus that it puts us naturally closer to the practice of the sciences. This means being able to set up an interdisciplinary dialogue that contrasts and compares modelling practices in different fields, say economics and biology, medicine and statistics, climate change and physics. It also means that it helps philosophers looking for questions that go beyond the narrow ‘what-is-causality’ or ‘what-are-relata’ and thus puts causality right at the centre of a complex crossroad: epistemology/methodology, metaphysics, politics/ethics. This special issue collects nine papers that touch upon various scientific fields, from system biology to medicine to quantum mechanics to economics, and different questions, from explanation and prediction to the role of both true and false assumptions in modelling.</description><subject>causal explanation</subject><subject>Causality</subject><subject>modelling</subject><subject>scientific models</subject><issn>0873-626X</issn><issn>2182-2875</issn><issn>0873-626X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkEtLAzEUhYMoWKtb1wOuo3lnKm6k-ChUXKjgLqR51JQxU5MM0n9vhgpuXN2zuN858AFwjtEl5phf2ZC3kCAsIUKYHoAJwS2BpJX8EExQKykURLwfg5OcNwgxijGdAD7XQ9ZdKLtGR9s89dZ1XYjrJsSmfLjmxQQXjcvXzSKW1NvBlNDHU3DkdZfd2e-dgrf7u9f5I1w-Pyzmt0toKOYFMk8M157OBJfeUtfWgIzDciUpk5Jhg5HwRlsrjOBCSoucQZjpmSXC-RWdgot97zb1X4PLRW36IcU6qepARYiQon5d7r9M6nNOzqttCp867RRGalSjRjVqVKNGNRW42QPfuisuWbdOw66Gv_b_wRmTjFD6A3pdak4</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Jiménez-Buedo, María</creator><creator>Russo, Federica</creator><general>Sciendo</general><general>De Gruyter Poland</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20171201</creationdate><title>Causality and Modelling in the Sciences: Introduction</title><author>Jiménez-Buedo, María ; Russo, Federica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-4f2c5af39657fd3e89650ce17b7347741c106fcadd6c65677d0ec014a9d26efb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>causal explanation</topic><topic>Causality</topic><topic>modelling</topic><topic>scientific models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiménez-Buedo, María</creatorcontrib><creatorcontrib>Russo, Federica</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Disputatio (Lisbon, Portugal)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiménez-Buedo, María</au><au>Russo, Federica</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Causality and Modelling in the Sciences: Introduction</atitle><jtitle>Disputatio (Lisbon, Portugal)</jtitle><date>2017-12-01</date><risdate>2017</risdate><volume>9</volume><issue>47</issue><spage>423</spage><epage>427</epage><pages>423-427</pages><issn>0873-626X</issn><eissn>2182-2875</eissn><eissn>0873-626X</eissn><abstract>The advantage of examining causality from the perspective of modelling is thus that it puts us naturally closer to the practice of the sciences. This means being able to set up an interdisciplinary dialogue that contrasts and compares modelling practices in different fields, say economics and biology, medicine and statistics, climate change and physics. It also means that it helps philosophers looking for questions that go beyond the narrow ‘what-is-causality’ or ‘what-are-relata’ and thus puts causality right at the centre of a complex crossroad: epistemology/methodology, metaphysics, politics/ethics. This special issue collects nine papers that touch upon various scientific fields, from system biology to medicine to quantum mechanics to economics, and different questions, from explanation and prediction to the role of both true and false assumptions in modelling.</abstract><cop>Lisbon</cop><pub>Sciendo</pub><doi>10.1515/disp-2017-0013</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0873-626X
ispartof Disputatio (Lisbon, Portugal), 2017-12, Vol.9 (47), p.423-427
issn 0873-626X
2182-2875
0873-626X
language eng
recordid cdi_crossref_primary_10_1515_disp_2017_0013
source De Gruyter Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects causal explanation
Causality
modelling
scientific models
title Causality and Modelling in the Sciences: Introduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T13%3A11%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Causality%20and%20Modelling%20in%20the%20Sciences:%20Introduction&rft.jtitle=Disputatio%20(Lisbon,%20Portugal)&rft.au=Jim%C3%A9nez-Buedo,%20Mar%C3%ADa&rft.date=2017-12-01&rft.volume=9&rft.issue=47&rft.spage=423&rft.epage=427&rft.pages=423-427&rft.issn=0873-626X&rft.eissn=2182-2875&rft_id=info:doi/10.1515/disp-2017-0013&rft_dat=%3Cproquest_cross%3E3156562676%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3156562676&rft_id=info:pmid/&rfr_iscdi=true