Causality and Modelling in the Sciences: Introduction
The advantage of examining causality from the perspective of modelling is thus that it puts us naturally closer to the practice of the sciences. This means being able to set up an interdisciplinary dialogue that contrasts and compares modelling practices in different fields, say economics and biolog...
Gespeichert in:
Veröffentlicht in: | Disputatio (Lisbon, Portugal) Portugal), 2017-12, Vol.9 (47), p.423-427 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 427 |
---|---|
container_issue | 47 |
container_start_page | 423 |
container_title | Disputatio (Lisbon, Portugal) |
container_volume | 9 |
creator | Jiménez-Buedo, María Russo, Federica |
description | The advantage of examining causality from the perspective of modelling is thus that it puts us naturally closer to the practice of the sciences. This means being able to set up an interdisciplinary dialogue that contrasts and compares modelling practices in different fields, say economics and biology, medicine and statistics, climate change and physics. It also means that it helps philosophers looking for questions that go beyond the narrow ‘what-is-causality’ or ‘what-are-relata’ and thus puts causality right at the centre of a complex crossroad: epistemology/methodology, metaphysics, politics/ethics. This special issue collects nine papers that touch upon various scientific fields, from system biology to medicine to quantum mechanics to economics, and different questions, from explanation and prediction to the role of both true and false assumptions in modelling. |
doi_str_mv | 10.1515/disp-2017-0013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1515_disp_2017_0013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3156562676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-4f2c5af39657fd3e89650ce17b7347741c106fcadd6c65677d0ec014a9d26efb3</originalsourceid><addsrcrecordid>eNptkEtLAzEUhYMoWKtb1wOuo3lnKm6k-ChUXKjgLqR51JQxU5MM0n9vhgpuXN2zuN858AFwjtEl5phf2ZC3kCAsIUKYHoAJwS2BpJX8EExQKykURLwfg5OcNwgxijGdAD7XQ9ZdKLtGR9s89dZ1XYjrJsSmfLjmxQQXjcvXzSKW1NvBlNDHU3DkdZfd2e-dgrf7u9f5I1w-Pyzmt0toKOYFMk8M157OBJfeUtfWgIzDciUpk5Jhg5HwRlsrjOBCSoucQZjpmSXC-RWdgot97zb1X4PLRW36IcU6qepARYiQon5d7r9M6nNOzqttCp867RRGalSjRjVqVKNGNRW42QPfuisuWbdOw66Gv_b_wRmTjFD6A3pdak4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3156562676</pqid></control><display><type>article</type><title>Causality and Modelling in the Sciences: Introduction</title><source>De Gruyter Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Jiménez-Buedo, María ; Russo, Federica</creator><creatorcontrib>Jiménez-Buedo, María ; Russo, Federica</creatorcontrib><description>The advantage of examining causality from the perspective of modelling is thus that it puts us naturally closer to the practice of the sciences. This means being able to set up an interdisciplinary dialogue that contrasts and compares modelling practices in different fields, say economics and biology, medicine and statistics, climate change and physics. It also means that it helps philosophers looking for questions that go beyond the narrow ‘what-is-causality’ or ‘what-are-relata’ and thus puts causality right at the centre of a complex crossroad: epistemology/methodology, metaphysics, politics/ethics. This special issue collects nine papers that touch upon various scientific fields, from system biology to medicine to quantum mechanics to economics, and different questions, from explanation and prediction to the role of both true and false assumptions in modelling.</description><identifier>ISSN: 0873-626X</identifier><identifier>EISSN: 2182-2875</identifier><identifier>EISSN: 0873-626X</identifier><identifier>DOI: 10.1515/disp-2017-0013</identifier><language>eng</language><publisher>Lisbon: Sciendo</publisher><subject>causal explanation ; Causality ; modelling ; scientific models</subject><ispartof>Disputatio (Lisbon, Portugal), 2017-12, Vol.9 (47), p.423-427</ispartof><rights>2017. This work is published under http://creativecommons.org/licenses/by-nc-nd/3.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://sciendo.com/pdf/10.1515/disp-2017-0013$$EPDF$$P50$$Gwalterdegruyter$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://sciendo.com/article/10.1515/disp-2017-0013$$EHTML$$P50$$Gwalterdegruyter$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,27903,27904,75910,75911</link.rule.ids></links><search><creatorcontrib>Jiménez-Buedo, María</creatorcontrib><creatorcontrib>Russo, Federica</creatorcontrib><title>Causality and Modelling in the Sciences: Introduction</title><title>Disputatio (Lisbon, Portugal)</title><description>The advantage of examining causality from the perspective of modelling is thus that it puts us naturally closer to the practice of the sciences. This means being able to set up an interdisciplinary dialogue that contrasts and compares modelling practices in different fields, say economics and biology, medicine and statistics, climate change and physics. It also means that it helps philosophers looking for questions that go beyond the narrow ‘what-is-causality’ or ‘what-are-relata’ and thus puts causality right at the centre of a complex crossroad: epistemology/methodology, metaphysics, politics/ethics. This special issue collects nine papers that touch upon various scientific fields, from system biology to medicine to quantum mechanics to economics, and different questions, from explanation and prediction to the role of both true and false assumptions in modelling.</description><subject>causal explanation</subject><subject>Causality</subject><subject>modelling</subject><subject>scientific models</subject><issn>0873-626X</issn><issn>2182-2875</issn><issn>0873-626X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkEtLAzEUhYMoWKtb1wOuo3lnKm6k-ChUXKjgLqR51JQxU5MM0n9vhgpuXN2zuN858AFwjtEl5phf2ZC3kCAsIUKYHoAJwS2BpJX8EExQKykURLwfg5OcNwgxijGdAD7XQ9ZdKLtGR9s89dZ1XYjrJsSmfLjmxQQXjcvXzSKW1NvBlNDHU3DkdZfd2e-dgrf7u9f5I1w-Pyzmt0toKOYFMk8M157OBJfeUtfWgIzDciUpk5Jhg5HwRlsrjOBCSoucQZjpmSXC-RWdgot97zb1X4PLRW36IcU6qepARYiQon5d7r9M6nNOzqttCp867RRGalSjRjVqVKNGNRW42QPfuisuWbdOw66Gv_b_wRmTjFD6A3pdak4</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Jiménez-Buedo, María</creator><creator>Russo, Federica</creator><general>Sciendo</general><general>De Gruyter Poland</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20171201</creationdate><title>Causality and Modelling in the Sciences: Introduction</title><author>Jiménez-Buedo, María ; Russo, Federica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-4f2c5af39657fd3e89650ce17b7347741c106fcadd6c65677d0ec014a9d26efb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>causal explanation</topic><topic>Causality</topic><topic>modelling</topic><topic>scientific models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiménez-Buedo, María</creatorcontrib><creatorcontrib>Russo, Federica</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Disputatio (Lisbon, Portugal)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiménez-Buedo, María</au><au>Russo, Federica</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Causality and Modelling in the Sciences: Introduction</atitle><jtitle>Disputatio (Lisbon, Portugal)</jtitle><date>2017-12-01</date><risdate>2017</risdate><volume>9</volume><issue>47</issue><spage>423</spage><epage>427</epage><pages>423-427</pages><issn>0873-626X</issn><eissn>2182-2875</eissn><eissn>0873-626X</eissn><abstract>The advantage of examining causality from the perspective of modelling is thus that it puts us naturally closer to the practice of the sciences. This means being able to set up an interdisciplinary dialogue that contrasts and compares modelling practices in different fields, say economics and biology, medicine and statistics, climate change and physics. It also means that it helps philosophers looking for questions that go beyond the narrow ‘what-is-causality’ or ‘what-are-relata’ and thus puts causality right at the centre of a complex crossroad: epistemology/methodology, metaphysics, politics/ethics. This special issue collects nine papers that touch upon various scientific fields, from system biology to medicine to quantum mechanics to economics, and different questions, from explanation and prediction to the role of both true and false assumptions in modelling.</abstract><cop>Lisbon</cop><pub>Sciendo</pub><doi>10.1515/disp-2017-0013</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0873-626X |
ispartof | Disputatio (Lisbon, Portugal), 2017-12, Vol.9 (47), p.423-427 |
issn | 0873-626X 2182-2875 0873-626X |
language | eng |
recordid | cdi_crossref_primary_10_1515_disp_2017_0013 |
source | De Gruyter Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | causal explanation Causality modelling scientific models |
title | Causality and Modelling in the Sciences: Introduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T13%3A11%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Causality%20and%20Modelling%20in%20the%20Sciences:%20Introduction&rft.jtitle=Disputatio%20(Lisbon,%20Portugal)&rft.au=Jim%C3%A9nez-Buedo,%20Mar%C3%ADa&rft.date=2017-12-01&rft.volume=9&rft.issue=47&rft.spage=423&rft.epage=427&rft.pages=423-427&rft.issn=0873-626X&rft.eissn=2182-2875&rft_id=info:doi/10.1515/disp-2017-0013&rft_dat=%3Cproquest_cross%3E3156562676%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3156562676&rft_id=info:pmid/&rfr_iscdi=true |