On characterization of a.s. convergence of all conditionings for sequences of random variables
We prove that in a non-atomic probability space, for a sequence of any integrable r.v. ( ) we have the following equivalence: E( |U) → 0 a.s. for any σ-field U of events iff → 0 a.s. and E sup | | < ∞.
Gespeichert in:
Veröffentlicht in: | Demonstratio mathematica 2012-06, Vol.45 (2), p.455-462 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 462 |
---|---|
container_issue | 2 |
container_start_page | 455 |
container_title | Demonstratio mathematica |
container_volume | 45 |
creator | Paszkiewicz, Adam |
description | We prove that in a non-atomic probability space, for a sequence of any integrable r.v. (
) we have the following equivalence: E(
|U) → 0 a.s. for any σ-field U of events iff
→ 0 a.s. and E sup
|
| < ∞. |
doi_str_mv | 10.1515/dema-2013-0376 |
format | Article |
fullrecord | <record><control><sourceid>walterdegruyter_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1515_dema_2013_0376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1515_dema_2013_0376452455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-c2ac4f8ff0ff89f24f04d362b7de04e37cc625295e61f9fd39b13c94103b31d83</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIVKVXzv6BBL-TSFxQxaNSpV7giuX4UVIlNthpUfl6YsqBC3vYHY1mVrsDwDVGJeaY3xg7qIIgTAtEK3EGZoQ2uGBC4PM_-BIsUtqhqUTNBEEz8LrxUL-pqPRoY_elxi54GBxUZSqhDv5g49Z6bX-4vs-U6bKo89sEXYgw2Y99VqQsicqbMMCDip1qe5uuwIVTfbKL3zkHLw_3z8unYr15XC3v1oUmdTVOXWnmaueQc3XjCHOIGSpIWxmLmKWV1oJw0nArsGucoU2LqW4YRrSl2NR0DsrTXh1DStE6-R67QcWjxEjmgGQOSOaAZA5oMtyeDJ-qnz43dhv3xwnIXdhHP536j5Fxwjin39Dzbmo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On characterization of a.s. convergence of all conditionings for sequences of random variables</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Paszkiewicz, Adam</creator><creatorcontrib>Paszkiewicz, Adam</creatorcontrib><description>We prove that in a non-atomic probability space, for a sequence of any integrable r.v. (
) we have the following equivalence: E(
|U) → 0 a.s. for any σ-field U of events iff
→ 0 a.s. and E sup
|
| < ∞.</description><identifier>ISSN: 2391-4661</identifier><identifier>EISSN: 2391-4661</identifier><identifier>DOI: 10.1515/dema-2013-0376</identifier><language>eng</language><publisher>De Gruyter Open</publisher><subject>28A20 ; 40A30 ; almost everywhere convergences ; conditional expectations</subject><ispartof>Demonstratio mathematica, 2012-06, Vol.45 (2), p.455-462</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-c2ac4f8ff0ff89f24f04d362b7de04e37cc625295e61f9fd39b13c94103b31d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Paszkiewicz, Adam</creatorcontrib><title>On characterization of a.s. convergence of all conditionings for sequences of random variables</title><title>Demonstratio mathematica</title><description>We prove that in a non-atomic probability space, for a sequence of any integrable r.v. (
) we have the following equivalence: E(
|U) → 0 a.s. for any σ-field U of events iff
→ 0 a.s. and E sup
|
| < ∞.</description><subject>28A20</subject><subject>40A30</subject><subject>almost everywhere convergences</subject><subject>conditional expectations</subject><issn>2391-4661</issn><issn>2391-4661</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1UMtOwzAQtBBIVKVXzv6BBL-TSFxQxaNSpV7giuX4UVIlNthpUfl6YsqBC3vYHY1mVrsDwDVGJeaY3xg7qIIgTAtEK3EGZoQ2uGBC4PM_-BIsUtqhqUTNBEEz8LrxUL-pqPRoY_elxi54GBxUZSqhDv5g49Z6bX-4vs-U6bKo89sEXYgw2Y99VqQsicqbMMCDip1qe5uuwIVTfbKL3zkHLw_3z8unYr15XC3v1oUmdTVOXWnmaueQc3XjCHOIGSpIWxmLmKWV1oJw0nArsGucoU2LqW4YRrSl2NR0DsrTXh1DStE6-R67QcWjxEjmgGQOSOaAZA5oMtyeDJ-qnz43dhv3xwnIXdhHP536j5Fxwjin39Dzbmo</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Paszkiewicz, Adam</creator><general>De Gruyter Open</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120601</creationdate><title>On characterization of a.s. convergence of all conditionings for sequences of random variables</title><author>Paszkiewicz, Adam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-c2ac4f8ff0ff89f24f04d362b7de04e37cc625295e61f9fd39b13c94103b31d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>28A20</topic><topic>40A30</topic><topic>almost everywhere convergences</topic><topic>conditional expectations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paszkiewicz, Adam</creatorcontrib><collection>CrossRef</collection><jtitle>Demonstratio mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paszkiewicz, Adam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On characterization of a.s. convergence of all conditionings for sequences of random variables</atitle><jtitle>Demonstratio mathematica</jtitle><date>2012-06-01</date><risdate>2012</risdate><volume>45</volume><issue>2</issue><spage>455</spage><epage>462</epage><pages>455-462</pages><issn>2391-4661</issn><eissn>2391-4661</eissn><abstract>We prove that in a non-atomic probability space, for a sequence of any integrable r.v. (
) we have the following equivalence: E(
|U) → 0 a.s. for any σ-field U of events iff
→ 0 a.s. and E sup
|
| < ∞.</abstract><pub>De Gruyter Open</pub><doi>10.1515/dema-2013-0376</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2391-4661 |
ispartof | Demonstratio mathematica, 2012-06, Vol.45 (2), p.455-462 |
issn | 2391-4661 2391-4661 |
language | eng |
recordid | cdi_crossref_primary_10_1515_dema_2013_0376 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | 28A20 40A30 almost everywhere convergences conditional expectations |
title | On characterization of a.s. convergence of all conditionings for sequences of random variables |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T20%3A48%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-walterdegruyter_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20characterization%20of%20a.s.%20convergence%20of%20all%20conditionings%20for%20sequences%20of%20random%20variables&rft.jtitle=Demonstratio%20mathematica&rft.au=Paszkiewicz,%20Adam&rft.date=2012-06-01&rft.volume=45&rft.issue=2&rft.spage=455&rft.epage=462&rft.pages=455-462&rft.issn=2391-4661&rft.eissn=2391-4661&rft_id=info:doi/10.1515/dema-2013-0376&rft_dat=%3Cwalterdegruyter_cross%3E10_1515_dema_2013_0376452455%3C/walterdegruyter_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |