A lower bound on the double outer-independent domination number of a tree

A vertex of a graph is said to dominate itself and all of its neighbors. A double outer-independent dominating set of a graph is a set of vertices of such that every vertex of is dominated by at least two vertices of , and the set ( ) \ is independent. The double outer-independent domination number...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Demonstratio mathematica 2012-03, Vol.45 (1), p.17-23
1. Verfasser: Krzywkowski, Marcin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23
container_issue 1
container_start_page 17
container_title Demonstratio mathematica
container_volume 45
creator Krzywkowski, Marcin
description A vertex of a graph is said to dominate itself and all of its neighbors. A double outer-independent dominating set of a graph is a set of vertices of such that every vertex of is dominated by at least two vertices of , and the set ( ) \ is independent. The double outer-independent domination number of a graph , denoted by , is the minimum cardinality of a double outer-independent dominating set of . We prove that for every nontrivial tree of order , with leaves and support vertices we have , and we characterize the trees attaining this lower bound. We also give a constructive characterization of trees such that
doi_str_mv 10.1515/dema-2013-0358
format Article
fullrecord <record><control><sourceid>walterdegruyter_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1515_dema_2013_0358</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1515_dema_2013_035845117</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-8a4364826e5941da3624a28fc0d9c4ee5eb3f30d372b157d040c39cf7eb6113d3</originalsourceid><addsrcrecordid>eNp1kE1rwzAMhs3YYKXrdWf_AXf-jsNOpeyjUNhlOxsnVraUxC5OQum_n0N36GU6SC9Ir5AehB4ZXTPF1JOH3hFOmSBUKHODFlyUjEit2e2VvkerYTjQHNpIzekC7Ta4iydIuIpT8DgGPP4A9nGqOsBxGiGRNng4Qk5hzI2-DW5s81yY-ir7YoMdHhPAA7prXDfA6q8u0dfry-f2new_3nbbzZ7U3OiRGCeFloZrUKVk3gnNpeOmqakvawmgoBKNoF4UvGKq8FTSWpR1U0ClGRNeLNH6srdOcRgSNPaY2t6ls2XUzizszMLOLOzMIhueL4aT6_I_Hr7TdM7CHuKUQj71H6NUjBXiF3mGZYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A lower bound on the double outer-independent domination number of a tree</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Krzywkowski, Marcin</creator><creatorcontrib>Krzywkowski, Marcin</creatorcontrib><description>A vertex of a graph is said to dominate itself and all of its neighbors. A double outer-independent dominating set of a graph is a set of vertices of such that every vertex of is dominated by at least two vertices of , and the set ( ) \ is independent. The double outer-independent domination number of a graph , denoted by , is the minimum cardinality of a double outer-independent dominating set of . We prove that for every nontrivial tree of order , with leaves and support vertices we have , and we characterize the trees attaining this lower bound. We also give a constructive characterization of trees such that</description><identifier>ISSN: 2391-4661</identifier><identifier>EISSN: 2391-4661</identifier><identifier>DOI: 10.1515/dema-2013-0358</identifier><language>eng</language><publisher>De Gruyter Open</publisher><subject>05C05 ; 05C69 ; double domination ; double outer-independent domination ; tree</subject><ispartof>Demonstratio mathematica, 2012-03, Vol.45 (1), p.17-23</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27923,27924</link.rule.ids></links><search><creatorcontrib>Krzywkowski, Marcin</creatorcontrib><title>A lower bound on the double outer-independent domination number of a tree</title><title>Demonstratio mathematica</title><description>A vertex of a graph is said to dominate itself and all of its neighbors. A double outer-independent dominating set of a graph is a set of vertices of such that every vertex of is dominated by at least two vertices of , and the set ( ) \ is independent. The double outer-independent domination number of a graph , denoted by , is the minimum cardinality of a double outer-independent dominating set of . We prove that for every nontrivial tree of order , with leaves and support vertices we have , and we characterize the trees attaining this lower bound. We also give a constructive characterization of trees such that</description><subject>05C05</subject><subject>05C69</subject><subject>double domination</subject><subject>double outer-independent domination</subject><subject>tree</subject><issn>2391-4661</issn><issn>2391-4661</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kE1rwzAMhs3YYKXrdWf_AXf-jsNOpeyjUNhlOxsnVraUxC5OQum_n0N36GU6SC9Ir5AehB4ZXTPF1JOH3hFOmSBUKHODFlyUjEit2e2VvkerYTjQHNpIzekC7Ta4iydIuIpT8DgGPP4A9nGqOsBxGiGRNng4Qk5hzI2-DW5s81yY-ir7YoMdHhPAA7prXDfA6q8u0dfry-f2new_3nbbzZ7U3OiRGCeFloZrUKVk3gnNpeOmqakvawmgoBKNoF4UvGKq8FTSWpR1U0ClGRNeLNH6srdOcRgSNPaY2t6ls2XUzizszMLOLOzMIhueL4aT6_I_Hr7TdM7CHuKUQj71H6NUjBXiF3mGZYw</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Krzywkowski, Marcin</creator><general>De Gruyter Open</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120301</creationdate><title>A lower bound on the double outer-independent domination number of a tree</title><author>Krzywkowski, Marcin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-8a4364826e5941da3624a28fc0d9c4ee5eb3f30d372b157d040c39cf7eb6113d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>05C05</topic><topic>05C69</topic><topic>double domination</topic><topic>double outer-independent domination</topic><topic>tree</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krzywkowski, Marcin</creatorcontrib><collection>CrossRef</collection><jtitle>Demonstratio mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krzywkowski, Marcin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A lower bound on the double outer-independent domination number of a tree</atitle><jtitle>Demonstratio mathematica</jtitle><date>2012-03-01</date><risdate>2012</risdate><volume>45</volume><issue>1</issue><spage>17</spage><epage>23</epage><pages>17-23</pages><issn>2391-4661</issn><eissn>2391-4661</eissn><abstract>A vertex of a graph is said to dominate itself and all of its neighbors. A double outer-independent dominating set of a graph is a set of vertices of such that every vertex of is dominated by at least two vertices of , and the set ( ) \ is independent. The double outer-independent domination number of a graph , denoted by , is the minimum cardinality of a double outer-independent dominating set of . We prove that for every nontrivial tree of order , with leaves and support vertices we have , and we characterize the trees attaining this lower bound. We also give a constructive characterization of trees such that</abstract><pub>De Gruyter Open</pub><doi>10.1515/dema-2013-0358</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2391-4661
ispartof Demonstratio mathematica, 2012-03, Vol.45 (1), p.17-23
issn 2391-4661
2391-4661
language eng
recordid cdi_crossref_primary_10_1515_dema_2013_0358
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects 05C05
05C69
double domination
double outer-independent domination
tree
title A lower bound on the double outer-independent domination number of a tree
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T13%3A08%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-walterdegruyter_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20lower%20bound%20on%20the%20double%20outer-independent%20domination%20number%20of%20a%20tree&rft.jtitle=Demonstratio%20mathematica&rft.au=Krzywkowski,%20Marcin&rft.date=2012-03-01&rft.volume=45&rft.issue=1&rft.spage=17&rft.epage=23&rft.pages=17-23&rft.issn=2391-4661&rft.eissn=2391-4661&rft_id=info:doi/10.1515/dema-2013-0358&rft_dat=%3Cwalterdegruyter_cross%3E10_1515_dema_2013_035845117%3C/walterdegruyter_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true