Quasi-plurisubharmonic envelopes 3: Solving Monge–Ampère equations on hermitian manifolds

We develop a new approach to -a priori estimates for degenerate complex Monge–Ampère equations on complex manifolds. It only relies on compactness and envelopes properties of quasi-plurisubharmonic functions. In a prequel [Quasi-plurisubharmonic envelopes 1: Uniform estimates on Kähler manifolds, pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal für die reine und angewandte Mathematik 2023-07, Vol.2023 (800), p.259-298
Hauptverfasser: Guedj, Vincent, Lu, Chinh H.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 298
container_issue 800
container_start_page 259
container_title Journal für die reine und angewandte Mathematik
container_volume 2023
creator Guedj, Vincent
Lu, Chinh H.
description We develop a new approach to -a priori estimates for degenerate complex Monge–Ampère equations on complex manifolds. It only relies on compactness and envelopes properties of quasi-plurisubharmonic functions. In a prequel [Quasi-plurisubharmonic envelopes 1: Uniform estimates on Kähler manifolds, preprint (2021), ], we have shown how this method allows one to obtain new and efficient proofs of several fundamental results in Kähler geometry. In [Quasi-plurisubharmonic envelopes 2: Bounds on Monge–Ampère volumes, (2022), 6, 688–713], we have studied the behavior of Monge–Ampère volumes on hermitian manifolds. We extend here the techniques of the former to the hermitian setting and use the bounds established in the latter, producing new relative a priori estimates, as well as several existence results for degenerate complex Monge–Ampère equations on compact hermitian manifolds.
doi_str_mv 10.1515/crelle-2023-0030
format Article
fullrecord <record><control><sourceid>walterdegruyter_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1515_crelle_2023_0030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1515_crelle_2023_00302023800259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-10799202ab05775d1a144fd2a8045b408c0c604ad4dffbda3b2cf3216fc864f03</originalsourceid><addsrcrecordid>eNp1kEtOwzAYhC0EEqWwZ5kLGH6_mpRdqXhJRQgBO6TISezWlWMHOynqjjtwCe7BTTgJicqW1czmG40-hE4JnBFBxHkZlLUKU6AMAzDYQyPCmcCCcbGPRgCpwJwAPURHMa4BQJCUjtDrYyejwY3tgoldsZKh9s6UiXIbZX2jYsIukidvN8Ytk3vvlurn43NWN99fQSXqrZOt8S4m3iUrFWrTGumSWjqjva3iMTrQ0kZ18pdj9HJ99Ty_xYuHm7v5bIFLBrTFBNLptD8uCxBpKioiCee6ojIDLgoOWQnlBLiseKV1UUlW0FIzSia6zCZcAxsj2O2WwccYlM6bYGoZtjmBfLCT7-zkg518sNMjlzvkXdpWhUotQ7ftS772XXD92X_RoWQAVEzZL4m7chA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quasi-plurisubharmonic envelopes 3: Solving Monge–Ampère equations on hermitian manifolds</title><source>De Gruyter journals</source><creator>Guedj, Vincent ; Lu, Chinh H.</creator><creatorcontrib>Guedj, Vincent ; Lu, Chinh H.</creatorcontrib><description>We develop a new approach to -a priori estimates for degenerate complex Monge–Ampère equations on complex manifolds. It only relies on compactness and envelopes properties of quasi-plurisubharmonic functions. In a prequel [Quasi-plurisubharmonic envelopes 1: Uniform estimates on Kähler manifolds, preprint (2021), ], we have shown how this method allows one to obtain new and efficient proofs of several fundamental results in Kähler geometry. In [Quasi-plurisubharmonic envelopes 2: Bounds on Monge–Ampère volumes, (2022), 6, 688–713], we have studied the behavior of Monge–Ampère volumes on hermitian manifolds. We extend here the techniques of the former to the hermitian setting and use the bounds established in the latter, producing new relative a priori estimates, as well as several existence results for degenerate complex Monge–Ampère equations on compact hermitian manifolds.</description><identifier>ISSN: 0075-4102</identifier><identifier>EISSN: 1435-5345</identifier><identifier>DOI: 10.1515/crelle-2023-0030</identifier><language>eng</language><publisher>De Gruyter</publisher><ispartof>Journal für die reine und angewandte Mathematik, 2023-07, Vol.2023 (800), p.259-298</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-10799202ab05775d1a144fd2a8045b408c0c604ad4dffbda3b2cf3216fc864f03</citedby><cites>FETCH-LOGICAL-c302t-10799202ab05775d1a144fd2a8045b408c0c604ad4dffbda3b2cf3216fc864f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/crelle-2023-0030/pdf$$EPDF$$P50$$Gwalterdegruyter$$H</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/crelle-2023-0030/html$$EHTML$$P50$$Gwalterdegruyter$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,66754,68538</link.rule.ids></links><search><creatorcontrib>Guedj, Vincent</creatorcontrib><creatorcontrib>Lu, Chinh H.</creatorcontrib><title>Quasi-plurisubharmonic envelopes 3: Solving Monge–Ampère equations on hermitian manifolds</title><title>Journal für die reine und angewandte Mathematik</title><description>We develop a new approach to -a priori estimates for degenerate complex Monge–Ampère equations on complex manifolds. It only relies on compactness and envelopes properties of quasi-plurisubharmonic functions. In a prequel [Quasi-plurisubharmonic envelopes 1: Uniform estimates on Kähler manifolds, preprint (2021), ], we have shown how this method allows one to obtain new and efficient proofs of several fundamental results in Kähler geometry. In [Quasi-plurisubharmonic envelopes 2: Bounds on Monge–Ampère volumes, (2022), 6, 688–713], we have studied the behavior of Monge–Ampère volumes on hermitian manifolds. We extend here the techniques of the former to the hermitian setting and use the bounds established in the latter, producing new relative a priori estimates, as well as several existence results for degenerate complex Monge–Ampère equations on compact hermitian manifolds.</description><issn>0075-4102</issn><issn>1435-5345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kEtOwzAYhC0EEqWwZ5kLGH6_mpRdqXhJRQgBO6TISezWlWMHOynqjjtwCe7BTTgJicqW1czmG40-hE4JnBFBxHkZlLUKU6AMAzDYQyPCmcCCcbGPRgCpwJwAPURHMa4BQJCUjtDrYyejwY3tgoldsZKh9s6UiXIbZX2jYsIukidvN8Ytk3vvlurn43NWN99fQSXqrZOt8S4m3iUrFWrTGumSWjqjva3iMTrQ0kZ18pdj9HJ99Ty_xYuHm7v5bIFLBrTFBNLptD8uCxBpKioiCee6ojIDLgoOWQnlBLiseKV1UUlW0FIzSia6zCZcAxsj2O2WwccYlM6bYGoZtjmBfLCT7-zkg518sNMjlzvkXdpWhUotQ7ftS772XXD92X_RoWQAVEzZL4m7chA</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Guedj, Vincent</creator><creator>Lu, Chinh H.</creator><general>De Gruyter</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230701</creationdate><title>Quasi-plurisubharmonic envelopes 3: Solving Monge–Ampère equations on hermitian manifolds</title><author>Guedj, Vincent ; Lu, Chinh H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-10799202ab05775d1a144fd2a8045b408c0c604ad4dffbda3b2cf3216fc864f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guedj, Vincent</creatorcontrib><creatorcontrib>Lu, Chinh H.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal für die reine und angewandte Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guedj, Vincent</au><au>Lu, Chinh H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quasi-plurisubharmonic envelopes 3: Solving Monge–Ampère equations on hermitian manifolds</atitle><jtitle>Journal für die reine und angewandte Mathematik</jtitle><date>2023-07-01</date><risdate>2023</risdate><volume>2023</volume><issue>800</issue><spage>259</spage><epage>298</epage><pages>259-298</pages><issn>0075-4102</issn><eissn>1435-5345</eissn><abstract>We develop a new approach to -a priori estimates for degenerate complex Monge–Ampère equations on complex manifolds. It only relies on compactness and envelopes properties of quasi-plurisubharmonic functions. In a prequel [Quasi-plurisubharmonic envelopes 1: Uniform estimates on Kähler manifolds, preprint (2021), ], we have shown how this method allows one to obtain new and efficient proofs of several fundamental results in Kähler geometry. In [Quasi-plurisubharmonic envelopes 2: Bounds on Monge–Ampère volumes, (2022), 6, 688–713], we have studied the behavior of Monge–Ampère volumes on hermitian manifolds. We extend here the techniques of the former to the hermitian setting and use the bounds established in the latter, producing new relative a priori estimates, as well as several existence results for degenerate complex Monge–Ampère equations on compact hermitian manifolds.</abstract><pub>De Gruyter</pub><doi>10.1515/crelle-2023-0030</doi><tpages>40</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0075-4102
ispartof Journal für die reine und angewandte Mathematik, 2023-07, Vol.2023 (800), p.259-298
issn 0075-4102
1435-5345
language eng
recordid cdi_crossref_primary_10_1515_crelle_2023_0030
source De Gruyter journals
title Quasi-plurisubharmonic envelopes 3: Solving Monge–Ampère equations on hermitian manifolds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A50%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-walterdegruyter_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quasi-plurisubharmonic%20envelopes%203:%20Solving%20Monge%E2%80%93Amp%C3%A8re%20equations%20on%20hermitian%20manifolds&rft.jtitle=Journal%20f%C3%BCr%20die%20reine%20und%20angewandte%20Mathematik&rft.au=Guedj,%20Vincent&rft.date=2023-07-01&rft.volume=2023&rft.issue=800&rft.spage=259&rft.epage=298&rft.pages=259-298&rft.issn=0075-4102&rft.eissn=1435-5345&rft_id=info:doi/10.1515/crelle-2023-0030&rft_dat=%3Cwalterdegruyter_cross%3E10_1515_crelle_2023_00302023800259%3C/walterdegruyter_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true