Quasi-plurisubharmonic envelopes 3: Solving Monge–Ampère equations on hermitian manifolds
We develop a new approach to -a priori estimates for degenerate complex Monge–Ampère equations on complex manifolds. It only relies on compactness and envelopes properties of quasi-plurisubharmonic functions. In a prequel [Quasi-plurisubharmonic envelopes 1: Uniform estimates on Kähler manifolds, pr...
Gespeichert in:
Veröffentlicht in: | Journal für die reine und angewandte Mathematik 2023-07, Vol.2023 (800), p.259-298 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 298 |
---|---|
container_issue | 800 |
container_start_page | 259 |
container_title | Journal für die reine und angewandte Mathematik |
container_volume | 2023 |
creator | Guedj, Vincent Lu, Chinh H. |
description | We develop a new approach to
-a priori estimates for degenerate complex Monge–Ampère equations on complex manifolds.
It only relies on compactness and envelopes properties of quasi-plurisubharmonic functions.
In a prequel [Quasi-plurisubharmonic envelopes 1: Uniform estimates on Kähler manifolds, preprint (2021),
], we have shown how this method allows one to obtain new and efficient proofs of several fundamental results in Kähler geometry.
In [Quasi-plurisubharmonic envelopes 2: Bounds on Monge–Ampère volumes,
(2022), 6, 688–713], we have studied the behavior of Monge–Ampère volumes on hermitian manifolds.
We extend here the techniques of the former to the hermitian setting and use the bounds established in the latter, producing new relative a priori estimates, as well as several existence results for degenerate complex Monge–Ampère equations on compact hermitian manifolds. |
doi_str_mv | 10.1515/crelle-2023-0030 |
format | Article |
fullrecord | <record><control><sourceid>walterdegruyter_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1515_crelle_2023_0030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1515_crelle_2023_00302023800259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-10799202ab05775d1a144fd2a8045b408c0c604ad4dffbda3b2cf3216fc864f03</originalsourceid><addsrcrecordid>eNp1kEtOwzAYhC0EEqWwZ5kLGH6_mpRdqXhJRQgBO6TISezWlWMHOynqjjtwCe7BTTgJicqW1czmG40-hE4JnBFBxHkZlLUKU6AMAzDYQyPCmcCCcbGPRgCpwJwAPURHMa4BQJCUjtDrYyejwY3tgoldsZKh9s6UiXIbZX2jYsIukidvN8Ytk3vvlurn43NWN99fQSXqrZOt8S4m3iUrFWrTGumSWjqjva3iMTrQ0kZ18pdj9HJ99Ty_xYuHm7v5bIFLBrTFBNLptD8uCxBpKioiCee6ojIDLgoOWQnlBLiseKV1UUlW0FIzSia6zCZcAxsj2O2WwccYlM6bYGoZtjmBfLCT7-zkg518sNMjlzvkXdpWhUotQ7ftS772XXD92X_RoWQAVEzZL4m7chA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quasi-plurisubharmonic envelopes 3: Solving Monge–Ampère equations on hermitian manifolds</title><source>De Gruyter journals</source><creator>Guedj, Vincent ; Lu, Chinh H.</creator><creatorcontrib>Guedj, Vincent ; Lu, Chinh H.</creatorcontrib><description>We develop a new approach to
-a priori estimates for degenerate complex Monge–Ampère equations on complex manifolds.
It only relies on compactness and envelopes properties of quasi-plurisubharmonic functions.
In a prequel [Quasi-plurisubharmonic envelopes 1: Uniform estimates on Kähler manifolds, preprint (2021),
], we have shown how this method allows one to obtain new and efficient proofs of several fundamental results in Kähler geometry.
In [Quasi-plurisubharmonic envelopes 2: Bounds on Monge–Ampère volumes,
(2022), 6, 688–713], we have studied the behavior of Monge–Ampère volumes on hermitian manifolds.
We extend here the techniques of the former to the hermitian setting and use the bounds established in the latter, producing new relative a priori estimates, as well as several existence results for degenerate complex Monge–Ampère equations on compact hermitian manifolds.</description><identifier>ISSN: 0075-4102</identifier><identifier>EISSN: 1435-5345</identifier><identifier>DOI: 10.1515/crelle-2023-0030</identifier><language>eng</language><publisher>De Gruyter</publisher><ispartof>Journal für die reine und angewandte Mathematik, 2023-07, Vol.2023 (800), p.259-298</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-10799202ab05775d1a144fd2a8045b408c0c604ad4dffbda3b2cf3216fc864f03</citedby><cites>FETCH-LOGICAL-c302t-10799202ab05775d1a144fd2a8045b408c0c604ad4dffbda3b2cf3216fc864f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/crelle-2023-0030/pdf$$EPDF$$P50$$Gwalterdegruyter$$H</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/crelle-2023-0030/html$$EHTML$$P50$$Gwalterdegruyter$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,66754,68538</link.rule.ids></links><search><creatorcontrib>Guedj, Vincent</creatorcontrib><creatorcontrib>Lu, Chinh H.</creatorcontrib><title>Quasi-plurisubharmonic envelopes 3: Solving Monge–Ampère equations on hermitian manifolds</title><title>Journal für die reine und angewandte Mathematik</title><description>We develop a new approach to
-a priori estimates for degenerate complex Monge–Ampère equations on complex manifolds.
It only relies on compactness and envelopes properties of quasi-plurisubharmonic functions.
In a prequel [Quasi-plurisubharmonic envelopes 1: Uniform estimates on Kähler manifolds, preprint (2021),
], we have shown how this method allows one to obtain new and efficient proofs of several fundamental results in Kähler geometry.
In [Quasi-plurisubharmonic envelopes 2: Bounds on Monge–Ampère volumes,
(2022), 6, 688–713], we have studied the behavior of Monge–Ampère volumes on hermitian manifolds.
We extend here the techniques of the former to the hermitian setting and use the bounds established in the latter, producing new relative a priori estimates, as well as several existence results for degenerate complex Monge–Ampère equations on compact hermitian manifolds.</description><issn>0075-4102</issn><issn>1435-5345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kEtOwzAYhC0EEqWwZ5kLGH6_mpRdqXhJRQgBO6TISezWlWMHOynqjjtwCe7BTTgJicqW1czmG40-hE4JnBFBxHkZlLUKU6AMAzDYQyPCmcCCcbGPRgCpwJwAPURHMa4BQJCUjtDrYyejwY3tgoldsZKh9s6UiXIbZX2jYsIukidvN8Ytk3vvlurn43NWN99fQSXqrZOt8S4m3iUrFWrTGumSWjqjva3iMTrQ0kZ18pdj9HJ99Ty_xYuHm7v5bIFLBrTFBNLptD8uCxBpKioiCee6ojIDLgoOWQnlBLiseKV1UUlW0FIzSia6zCZcAxsj2O2WwccYlM6bYGoZtjmBfLCT7-zkg518sNMjlzvkXdpWhUotQ7ftS772XXD92X_RoWQAVEzZL4m7chA</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Guedj, Vincent</creator><creator>Lu, Chinh H.</creator><general>De Gruyter</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230701</creationdate><title>Quasi-plurisubharmonic envelopes 3: Solving Monge–Ampère equations on hermitian manifolds</title><author>Guedj, Vincent ; Lu, Chinh H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-10799202ab05775d1a144fd2a8045b408c0c604ad4dffbda3b2cf3216fc864f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guedj, Vincent</creatorcontrib><creatorcontrib>Lu, Chinh H.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal für die reine und angewandte Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guedj, Vincent</au><au>Lu, Chinh H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quasi-plurisubharmonic envelopes 3: Solving Monge–Ampère equations on hermitian manifolds</atitle><jtitle>Journal für die reine und angewandte Mathematik</jtitle><date>2023-07-01</date><risdate>2023</risdate><volume>2023</volume><issue>800</issue><spage>259</spage><epage>298</epage><pages>259-298</pages><issn>0075-4102</issn><eissn>1435-5345</eissn><abstract>We develop a new approach to
-a priori estimates for degenerate complex Monge–Ampère equations on complex manifolds.
It only relies on compactness and envelopes properties of quasi-plurisubharmonic functions.
In a prequel [Quasi-plurisubharmonic envelopes 1: Uniform estimates on Kähler manifolds, preprint (2021),
], we have shown how this method allows one to obtain new and efficient proofs of several fundamental results in Kähler geometry.
In [Quasi-plurisubharmonic envelopes 2: Bounds on Monge–Ampère volumes,
(2022), 6, 688–713], we have studied the behavior of Monge–Ampère volumes on hermitian manifolds.
We extend here the techniques of the former to the hermitian setting and use the bounds established in the latter, producing new relative a priori estimates, as well as several existence results for degenerate complex Monge–Ampère equations on compact hermitian manifolds.</abstract><pub>De Gruyter</pub><doi>10.1515/crelle-2023-0030</doi><tpages>40</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0075-4102 |
ispartof | Journal für die reine und angewandte Mathematik, 2023-07, Vol.2023 (800), p.259-298 |
issn | 0075-4102 1435-5345 |
language | eng |
recordid | cdi_crossref_primary_10_1515_crelle_2023_0030 |
source | De Gruyter journals |
title | Quasi-plurisubharmonic envelopes 3: Solving Monge–Ampère equations on hermitian manifolds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A50%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-walterdegruyter_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quasi-plurisubharmonic%20envelopes%203:%20Solving%20Monge%E2%80%93Amp%C3%A8re%20equations%20on%20hermitian%20manifolds&rft.jtitle=Journal%20f%C3%BCr%20die%20reine%20und%20angewandte%20Mathematik&rft.au=Guedj,%20Vincent&rft.date=2023-07-01&rft.volume=2023&rft.issue=800&rft.spage=259&rft.epage=298&rft.pages=259-298&rft.issn=0075-4102&rft.eissn=1435-5345&rft_id=info:doi/10.1515/crelle-2023-0030&rft_dat=%3Cwalterdegruyter_cross%3E10_1515_crelle_2023_00302023800259%3C/walterdegruyter_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |