The wall-crossing behavior for Bridgeland’s stability conditions on abelian and K3 surfaces

The wall-crossing behavior for Bridgeland’s stability conditions on the derived category of coherent sheaves on K3 or abelian surface is studied. We introduce two types of walls. One is called the wall for categories, where the -structure encoded by stability condition is changed. The other is the w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal für die reine und angewandte Mathematik 2018-02, Vol.2018 (735), p.1-107
Hauptverfasser: Minamide, Hiroki, Yanagida, Shintarou, Yoshioka, Kōta
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 107
container_issue 735
container_start_page 1
container_title Journal für die reine und angewandte Mathematik
container_volume 2018
creator Minamide, Hiroki
Yanagida, Shintarou
Yoshioka, Kōta
description The wall-crossing behavior for Bridgeland’s stability conditions on the derived category of coherent sheaves on K3 or abelian surface is studied. We introduce two types of walls. One is called the wall for categories, where the -structure encoded by stability condition is changed. The other is the wall for stabilities, where stable objects with prescribed Mukai vector may get destabilized. Some fundamental properties of walls and chambers are studied, including the behavior under Fourier–Mukai transforms. A wall-crossing formula of the counting of stable objects will also be derived. As an application, we will explain previous results on the birational maps induced by Fourier–Mukai transforms on abelian surfaces. These transformations turns out to coincide with crossing walls of certain property.
doi_str_mv 10.1515/crelle-2015-0010
format Article
fullrecord <record><control><sourceid>walterdegruyter_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1515_crelle_2015_0010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1515_crelle_2015_001020187351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-83d7d1df89237071b21812babb7c62dca8cd88d265bb958f58233c30a8bb66283</originalsourceid><addsrcrecordid>eNp1kLtOAzEQRS0EEiHQU_oHDGM7XjsdEPESSDShRCu_NnFkvMjegNLxG_weX4JDaClG9zZnNHMQOqVwRgUV5zb7GD1hQAUBoLCHRnTCBRF8IvbRCEAKMqHADtFRKSsAEFSyEXqZLz3-0DESm_tSQlpg45f6PfQZd3WucnALH3Vy359fBZdBmxDDsMG2Ty4MoU8F9wlr42PQNZPDDxyXde609eUYHXQ6Fn_yl2P0fHM9n92Rx6fb-9nlI7EcYCCKO-mo69SUcQmSGkYVZUYbI23DnNXKOqUca4QxU6E6oRjnFdXKmKZhio8R7Pb-PpF9177l8KrzpqXQbvW0Oz3tVk-71VORix1Snx98dn6R15ta2lW_zqke-y9ai5JcUP4DybtwhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The wall-crossing behavior for Bridgeland’s stability conditions on abelian and K3 surfaces</title><source>De Gruyter journals</source><creator>Minamide, Hiroki ; Yanagida, Shintarou ; Yoshioka, Kōta</creator><creatorcontrib>Minamide, Hiroki ; Yanagida, Shintarou ; Yoshioka, Kōta</creatorcontrib><description>The wall-crossing behavior for Bridgeland’s stability conditions on the derived category of coherent sheaves on K3 or abelian surface is studied. We introduce two types of walls. One is called the wall for categories, where the -structure encoded by stability condition is changed. The other is the wall for stabilities, where stable objects with prescribed Mukai vector may get destabilized. Some fundamental properties of walls and chambers are studied, including the behavior under Fourier–Mukai transforms. A wall-crossing formula of the counting of stable objects will also be derived. As an application, we will explain previous results on the birational maps induced by Fourier–Mukai transforms on abelian surfaces. These transformations turns out to coincide with crossing walls of certain property.</description><identifier>ISSN: 0075-4102</identifier><identifier>EISSN: 1435-5345</identifier><identifier>DOI: 10.1515/crelle-2015-0010</identifier><language>eng</language><publisher>De Gruyter</publisher><ispartof>Journal für die reine und angewandte Mathematik, 2018-02, Vol.2018 (735), p.1-107</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-83d7d1df89237071b21812babb7c62dca8cd88d265bb958f58233c30a8bb66283</citedby><cites>FETCH-LOGICAL-c300t-83d7d1df89237071b21812babb7c62dca8cd88d265bb958f58233c30a8bb66283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/crelle-2015-0010/pdf$$EPDF$$P50$$Gwalterdegruyter$$H</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/crelle-2015-0010/html$$EHTML$$P50$$Gwalterdegruyter$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,66500,68284</link.rule.ids></links><search><creatorcontrib>Minamide, Hiroki</creatorcontrib><creatorcontrib>Yanagida, Shintarou</creatorcontrib><creatorcontrib>Yoshioka, Kōta</creatorcontrib><title>The wall-crossing behavior for Bridgeland’s stability conditions on abelian and K3 surfaces</title><title>Journal für die reine und angewandte Mathematik</title><description>The wall-crossing behavior for Bridgeland’s stability conditions on the derived category of coherent sheaves on K3 or abelian surface is studied. We introduce two types of walls. One is called the wall for categories, where the -structure encoded by stability condition is changed. The other is the wall for stabilities, where stable objects with prescribed Mukai vector may get destabilized. Some fundamental properties of walls and chambers are studied, including the behavior under Fourier–Mukai transforms. A wall-crossing formula of the counting of stable objects will also be derived. As an application, we will explain previous results on the birational maps induced by Fourier–Mukai transforms on abelian surfaces. These transformations turns out to coincide with crossing walls of certain property.</description><issn>0075-4102</issn><issn>1435-5345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOAzEQRS0EEiHQU_oHDGM7XjsdEPESSDShRCu_NnFkvMjegNLxG_weX4JDaClG9zZnNHMQOqVwRgUV5zb7GD1hQAUBoLCHRnTCBRF8IvbRCEAKMqHADtFRKSsAEFSyEXqZLz3-0DESm_tSQlpg45f6PfQZd3WucnALH3Vy359fBZdBmxDDsMG2Ty4MoU8F9wlr42PQNZPDDxyXde609eUYHXQ6Fn_yl2P0fHM9n92Rx6fb-9nlI7EcYCCKO-mo69SUcQmSGkYVZUYbI23DnNXKOqUca4QxU6E6oRjnFdXKmKZhio8R7Pb-PpF9177l8KrzpqXQbvW0Oz3tVk-71VORix1Snx98dn6R15ta2lW_zqke-y9ai5JcUP4DybtwhA</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Minamide, Hiroki</creator><creator>Yanagida, Shintarou</creator><creator>Yoshioka, Kōta</creator><general>De Gruyter</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180201</creationdate><title>The wall-crossing behavior for Bridgeland’s stability conditions on abelian and K3 surfaces</title><author>Minamide, Hiroki ; Yanagida, Shintarou ; Yoshioka, Kōta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-83d7d1df89237071b21812babb7c62dca8cd88d265bb958f58233c30a8bb66283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Minamide, Hiroki</creatorcontrib><creatorcontrib>Yanagida, Shintarou</creatorcontrib><creatorcontrib>Yoshioka, Kōta</creatorcontrib><collection>CrossRef</collection><jtitle>Journal für die reine und angewandte Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Minamide, Hiroki</au><au>Yanagida, Shintarou</au><au>Yoshioka, Kōta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The wall-crossing behavior for Bridgeland’s stability conditions on abelian and K3 surfaces</atitle><jtitle>Journal für die reine und angewandte Mathematik</jtitle><date>2018-02-01</date><risdate>2018</risdate><volume>2018</volume><issue>735</issue><spage>1</spage><epage>107</epage><pages>1-107</pages><issn>0075-4102</issn><eissn>1435-5345</eissn><abstract>The wall-crossing behavior for Bridgeland’s stability conditions on the derived category of coherent sheaves on K3 or abelian surface is studied. We introduce two types of walls. One is called the wall for categories, where the -structure encoded by stability condition is changed. The other is the wall for stabilities, where stable objects with prescribed Mukai vector may get destabilized. Some fundamental properties of walls and chambers are studied, including the behavior under Fourier–Mukai transforms. A wall-crossing formula of the counting of stable objects will also be derived. As an application, we will explain previous results on the birational maps induced by Fourier–Mukai transforms on abelian surfaces. These transformations turns out to coincide with crossing walls of certain property.</abstract><pub>De Gruyter</pub><doi>10.1515/crelle-2015-0010</doi><tpages>107</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0075-4102
ispartof Journal für die reine und angewandte Mathematik, 2018-02, Vol.2018 (735), p.1-107
issn 0075-4102
1435-5345
language eng
recordid cdi_crossref_primary_10_1515_crelle_2015_0010
source De Gruyter journals
title The wall-crossing behavior for Bridgeland’s stability conditions on abelian and K3 surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A45%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-walterdegruyter_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20wall-crossing%20behavior%20for%20Bridgeland%E2%80%99s%20stability%20conditions%20on%20abelian%20and%20K3%20surfaces&rft.jtitle=Journal%20f%C3%BCr%20die%20reine%20und%20angewandte%20Mathematik&rft.au=Minamide,%20Hiroki&rft.date=2018-02-01&rft.volume=2018&rft.issue=735&rft.spage=1&rft.epage=107&rft.pages=1-107&rft.issn=0075-4102&rft.eissn=1435-5345&rft_id=info:doi/10.1515/crelle-2015-0010&rft_dat=%3Cwalterdegruyter_cross%3E10_1515_crelle_2015_001020187351%3C/walterdegruyter_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true