Singular equivariant asymptotics and Weyl’s law. On the distribution of eigenvalues of an invariant elliptic operator

We study the spectrum of an invariant, elliptic, classical pseudodifferential operator on a closed Riemannian manifold carrying an effective and isometric action of a compact, connected Lie group . Using resolution of singularities, we determine the asymptotic distribution of eigenvalues along the i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal für die reine und angewandte Mathematik 2016-07, Vol.2016 (716), p.29-101
1. Verfasser: Ramacher, Pablo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 101
container_issue 716
container_start_page 29
container_title Journal für die reine und angewandte Mathematik
container_volume 2016
creator Ramacher, Pablo
description We study the spectrum of an invariant, elliptic, classical pseudodifferential operator on a closed Riemannian manifold carrying an effective and isometric action of a compact, connected Lie group . Using resolution of singularities, we determine the asymptotic distribution of eigenvalues along the isotypic components, and relate it to the reduction of the corresponding Hamiltonian flow, proving that the reduced spectral counting function satisfies Weyl’s law, together with an estimate for the remainder.
doi_str_mv 10.1515/crelle-2014-0008
format Article
fullrecord <record><control><sourceid>walterdegruyter_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1515_crelle_2014_0008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1515_crelle_2014_0008201671629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-25771601b745f828f8a9171b0be8658b0dab90a5214964f247c7a0f4b0bcbc813</originalsourceid><addsrcrecordid>eNp1kE1OwzAUhC0EEqWwZ-kLpNiOHSfLquJPqtQFIJbRS-IUV64TbIcqO67B9TgJjgpLVm-eNDMafQhdU7Kggoqb2iljVMII5QkhJD9BM8pTkYiUi1M0I0SKhFPCztGF97voEFSyGTo8absdDDis3gf9AU6DDRj8uO9DF3TtMdgGv6rRfH9-eWzgsMAbi8Obwo32welqCLqzuGux0ltlP8AMyk8vWKztX2HcpvtYh7teOQidu0RnLRivrn7vHL3c3T6vHpL15v5xtVwndZrJkDAhJc0IrSQXbc7yNoeCSlqRSuWZyCvSQFUQEIzyIuMt47KWQFoeDXVV5zSdI3LsrV3nvVNt2Tu9BzeWlJQTuPIIrpzAlRO4GFkeIwcwQblGbd0wRlHuusHZOPbfaBRZnMuK9AfP9HsK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Singular equivariant asymptotics and Weyl’s law. On the distribution of eigenvalues of an invariant elliptic operator</title><source>De Gruyter journals</source><creator>Ramacher, Pablo</creator><creatorcontrib>Ramacher, Pablo</creatorcontrib><description>We study the spectrum of an invariant, elliptic, classical pseudodifferential operator on a closed Riemannian manifold carrying an effective and isometric action of a compact, connected Lie group . Using resolution of singularities, we determine the asymptotic distribution of eigenvalues along the isotypic components, and relate it to the reduction of the corresponding Hamiltonian flow, proving that the reduced spectral counting function satisfies Weyl’s law, together with an estimate for the remainder.</description><identifier>ISSN: 0075-4102</identifier><identifier>EISSN: 1435-5345</identifier><identifier>DOI: 10.1515/crelle-2014-0008</identifier><language>eng</language><publisher>De Gruyter</publisher><ispartof>Journal für die reine und angewandte Mathematik, 2016-07, Vol.2016 (716), p.29-101</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-25771601b745f828f8a9171b0be8658b0dab90a5214964f247c7a0f4b0bcbc813</citedby><cites>FETCH-LOGICAL-c367t-25771601b745f828f8a9171b0be8658b0dab90a5214964f247c7a0f4b0bcbc813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/crelle-2014-0008/pdf$$EPDF$$P50$$Gwalterdegruyter$$H</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/crelle-2014-0008/html$$EHTML$$P50$$Gwalterdegruyter$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,66754,68538</link.rule.ids></links><search><creatorcontrib>Ramacher, Pablo</creatorcontrib><title>Singular equivariant asymptotics and Weyl’s law. On the distribution of eigenvalues of an invariant elliptic operator</title><title>Journal für die reine und angewandte Mathematik</title><description>We study the spectrum of an invariant, elliptic, classical pseudodifferential operator on a closed Riemannian manifold carrying an effective and isometric action of a compact, connected Lie group . Using resolution of singularities, we determine the asymptotic distribution of eigenvalues along the isotypic components, and relate it to the reduction of the corresponding Hamiltonian flow, proving that the reduced spectral counting function satisfies Weyl’s law, together with an estimate for the remainder.</description><issn>0075-4102</issn><issn>1435-5345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAUhC0EEqWwZ-kLpNiOHSfLquJPqtQFIJbRS-IUV64TbIcqO67B9TgJjgpLVm-eNDMafQhdU7Kggoqb2iljVMII5QkhJD9BM8pTkYiUi1M0I0SKhFPCztGF97voEFSyGTo8absdDDis3gf9AU6DDRj8uO9DF3TtMdgGv6rRfH9-eWzgsMAbi8Obwo32welqCLqzuGux0ltlP8AMyk8vWKztX2HcpvtYh7teOQidu0RnLRivrn7vHL3c3T6vHpL15v5xtVwndZrJkDAhJc0IrSQXbc7yNoeCSlqRSuWZyCvSQFUQEIzyIuMt47KWQFoeDXVV5zSdI3LsrV3nvVNt2Tu9BzeWlJQTuPIIrpzAlRO4GFkeIwcwQblGbd0wRlHuusHZOPbfaBRZnMuK9AfP9HsK</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Ramacher, Pablo</creator><general>De Gruyter</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160701</creationdate><title>Singular equivariant asymptotics and Weyl’s law. On the distribution of eigenvalues of an invariant elliptic operator</title><author>Ramacher, Pablo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-25771601b745f828f8a9171b0be8658b0dab90a5214964f247c7a0f4b0bcbc813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramacher, Pablo</creatorcontrib><collection>CrossRef</collection><jtitle>Journal für die reine und angewandte Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramacher, Pablo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Singular equivariant asymptotics and Weyl’s law. On the distribution of eigenvalues of an invariant elliptic operator</atitle><jtitle>Journal für die reine und angewandte Mathematik</jtitle><date>2016-07-01</date><risdate>2016</risdate><volume>2016</volume><issue>716</issue><spage>29</spage><epage>101</epage><pages>29-101</pages><issn>0075-4102</issn><eissn>1435-5345</eissn><abstract>We study the spectrum of an invariant, elliptic, classical pseudodifferential operator on a closed Riemannian manifold carrying an effective and isometric action of a compact, connected Lie group . Using resolution of singularities, we determine the asymptotic distribution of eigenvalues along the isotypic components, and relate it to the reduction of the corresponding Hamiltonian flow, proving that the reduced spectral counting function satisfies Weyl’s law, together with an estimate for the remainder.</abstract><pub>De Gruyter</pub><doi>10.1515/crelle-2014-0008</doi><tpages>73</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0075-4102
ispartof Journal für die reine und angewandte Mathematik, 2016-07, Vol.2016 (716), p.29-101
issn 0075-4102
1435-5345
language eng
recordid cdi_crossref_primary_10_1515_crelle_2014_0008
source De Gruyter journals
title Singular equivariant asymptotics and Weyl’s law. On the distribution of eigenvalues of an invariant elliptic operator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A19%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-walterdegruyter_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Singular%20equivariant%20asymptotics%20and%20Weyl%E2%80%99s%20law.%20On%20the%20distribution%20of%20eigenvalues%20of%20an%20invariant%20elliptic%20operator&rft.jtitle=Journal%20f%C3%BCr%20die%20reine%20und%20angewandte%20Mathematik&rft.au=Ramacher,%20Pablo&rft.date=2016-07-01&rft.volume=2016&rft.issue=716&rft.spage=29&rft.epage=101&rft.pages=29-101&rft.issn=0075-4102&rft.eissn=1435-5345&rft_id=info:doi/10.1515/crelle-2014-0008&rft_dat=%3Cwalterdegruyter_cross%3E10_1515_crelle_2014_0008201671629%3C/walterdegruyter_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true