Flows of constant mean curvature tori in the 3-sphere: The equivariant case
We present a deformation for constant mean curvature tori in the 3-sphere. We show that the moduli space of equivariant constant mean curvature tori in the 3-sphere is connected, and we classify the minimal, the embedded, and the Alexandrov embedded tori therein.
Gespeichert in:
Veröffentlicht in: | Journal für die reine und angewandte Mathematik 2015-10, Vol.2015 (707), p.45-86 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 86 |
---|---|
container_issue | 707 |
container_start_page | 45 |
container_title | Journal für die reine und angewandte Mathematik |
container_volume | 2015 |
creator | Kilian, Martin Schmidt, Martin U. Schmitt, Nicholas |
description | We present a deformation for constant mean curvature tori
in the 3-sphere. We show that the moduli space of equivariant constant mean curvature tori in the 3-sphere is connected, and we classify the minimal, the embedded, and the Alexandrov embedded tori therein. |
doi_str_mv | 10.1515/crelle-2013-0079 |
format | Article |
fullrecord | <record><control><sourceid>walterdegruyter_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1515_crelle_2013_0079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1515_crelle_2013_0079201570745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-1a6d3a14ebf6c858e3bb24bf857b122b3fe751b1d4a13b82fd2d41b40f7bd71a3</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqWwZ-kfMHj8qAO7qqKAqMSmrC07GdNUaVJsp1X_nkRly2ruXOmMRoeQe-APoEE_lhGbBpngIBnn5umCTEBJzbRU-pJMhkozBVxck5uUtpxzDUZMyMey6Y6JdoGWXZuyazPdoWtp2ceDy31EmrtY07qleYNUsrTfYMRnuh42_Onrg4v1CJUu4S25Cq5JePc3p-Rr-bJevLHV5-v7Yr5ipVQyM3CzSjpQ6MOsLHSB0nuhfCi08SCElwGNBg-VciB9IUIlKgVe8WB8ZcDJKeHnu2XsUooY7D7WOxdPFrgdZdizDDvKsKOMAZmfkaNrMsYKv2N_GoLddn1sh2f_RYegDTdKy19sgGmu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Flows of constant mean curvature tori in the 3-sphere: The equivariant case</title><source>De Gruyter journals</source><creator>Kilian, Martin ; Schmidt, Martin U. ; Schmitt, Nicholas</creator><creatorcontrib>Kilian, Martin ; Schmidt, Martin U. ; Schmitt, Nicholas</creatorcontrib><description>We present a deformation for constant mean curvature tori
in the 3-sphere. We show that the moduli space of equivariant constant mean curvature tori in the 3-sphere is connected, and we classify the minimal, the embedded, and the Alexandrov embedded tori therein.</description><identifier>ISSN: 0075-4102</identifier><identifier>EISSN: 1435-5345</identifier><identifier>DOI: 10.1515/crelle-2013-0079</identifier><language>eng</language><publisher>De Gruyter</publisher><ispartof>Journal für die reine und angewandte Mathematik, 2015-10, Vol.2015 (707), p.45-86</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-1a6d3a14ebf6c858e3bb24bf857b122b3fe751b1d4a13b82fd2d41b40f7bd71a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/crelle-2013-0079/pdf$$EPDF$$P50$$Gwalterdegruyter$$H</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/crelle-2013-0079/html$$EHTML$$P50$$Gwalterdegruyter$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,66497,68281</link.rule.ids></links><search><creatorcontrib>Kilian, Martin</creatorcontrib><creatorcontrib>Schmidt, Martin U.</creatorcontrib><creatorcontrib>Schmitt, Nicholas</creatorcontrib><title>Flows of constant mean curvature tori in the 3-sphere: The equivariant case</title><title>Journal für die reine und angewandte Mathematik</title><description>We present a deformation for constant mean curvature tori
in the 3-sphere. We show that the moduli space of equivariant constant mean curvature tori in the 3-sphere is connected, and we classify the minimal, the embedded, and the Alexandrov embedded tori therein.</description><issn>0075-4102</issn><issn>1435-5345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqWwZ-kfMHj8qAO7qqKAqMSmrC07GdNUaVJsp1X_nkRly2ruXOmMRoeQe-APoEE_lhGbBpngIBnn5umCTEBJzbRU-pJMhkozBVxck5uUtpxzDUZMyMey6Y6JdoGWXZuyazPdoWtp2ceDy31EmrtY07qleYNUsrTfYMRnuh42_Onrg4v1CJUu4S25Cq5JePc3p-Rr-bJevLHV5-v7Yr5ipVQyM3CzSjpQ6MOsLHSB0nuhfCi08SCElwGNBg-VciB9IUIlKgVe8WB8ZcDJKeHnu2XsUooY7D7WOxdPFrgdZdizDDvKsKOMAZmfkaNrMsYKv2N_GoLddn1sh2f_RYegDTdKy19sgGmu</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Kilian, Martin</creator><creator>Schmidt, Martin U.</creator><creator>Schmitt, Nicholas</creator><general>De Gruyter</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20151001</creationdate><title>Flows of constant mean curvature tori in the 3-sphere: The equivariant case</title><author>Kilian, Martin ; Schmidt, Martin U. ; Schmitt, Nicholas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-1a6d3a14ebf6c858e3bb24bf857b122b3fe751b1d4a13b82fd2d41b40f7bd71a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kilian, Martin</creatorcontrib><creatorcontrib>Schmidt, Martin U.</creatorcontrib><creatorcontrib>Schmitt, Nicholas</creatorcontrib><collection>CrossRef</collection><jtitle>Journal für die reine und angewandte Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kilian, Martin</au><au>Schmidt, Martin U.</au><au>Schmitt, Nicholas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flows of constant mean curvature tori in the 3-sphere: The equivariant case</atitle><jtitle>Journal für die reine und angewandte Mathematik</jtitle><date>2015-10-01</date><risdate>2015</risdate><volume>2015</volume><issue>707</issue><spage>45</spage><epage>86</epage><pages>45-86</pages><issn>0075-4102</issn><eissn>1435-5345</eissn><abstract>We present a deformation for constant mean curvature tori
in the 3-sphere. We show that the moduli space of equivariant constant mean curvature tori in the 3-sphere is connected, and we classify the minimal, the embedded, and the Alexandrov embedded tori therein.</abstract><pub>De Gruyter</pub><doi>10.1515/crelle-2013-0079</doi><tpages>42</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0075-4102 |
ispartof | Journal für die reine und angewandte Mathematik, 2015-10, Vol.2015 (707), p.45-86 |
issn | 0075-4102 1435-5345 |
language | eng |
recordid | cdi_crossref_primary_10_1515_crelle_2013_0079 |
source | De Gruyter journals |
title | Flows of constant mean curvature tori in the 3-sphere: The equivariant case |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A26%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-walterdegruyter_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flows%20of%20constant%20mean%20curvature%20tori%20in%20the%203-sphere:%20The%20equivariant%20case&rft.jtitle=Journal%20f%C3%BCr%20die%20reine%20und%20angewandte%20Mathematik&rft.au=Kilian,%20Martin&rft.date=2015-10-01&rft.volume=2015&rft.issue=707&rft.spage=45&rft.epage=86&rft.pages=45-86&rft.issn=0075-4102&rft.eissn=1435-5345&rft_id=info:doi/10.1515/crelle-2013-0079&rft_dat=%3Cwalterdegruyter_cross%3E10_1515_crelle_2013_0079201570745%3C/walterdegruyter_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |