Maximal minors and linear powers

An ideal in a polynomial ring has linear powers if all the powers of have a linear free resolution. We show that the ideal of maximal minors of a sufficiently general matrix with linear entries has linear powers. The required genericity is expressed in terms of the heights of the ideals of lower ord...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal für die reine und angewandte Mathematik 2015-05, Vol.2015 (702), p.41-53
Hauptverfasser: Bruns, Winfried, Conca, Aldo, Varbaro, Matteo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 53
container_issue 702
container_start_page 41
container_title Journal für die reine und angewandte Mathematik
container_volume 2015
creator Bruns, Winfried
Conca, Aldo
Varbaro, Matteo
description An ideal in a polynomial ring has linear powers if all the powers of have a linear free resolution. We show that the ideal of maximal minors of a sufficiently general matrix with linear entries has linear powers. The required genericity is expressed in terms of the heights of the ideals of lower order minors. In particular we prove that every rational normal scroll has linear powers.
doi_str_mv 10.1515/crelle-2013-0026
format Article
fullrecord <record><control><sourceid>walterdegruyter_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1515_crelle_2013_0026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1515_crelle_2013_0026201570241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-5cb8a0746ce24a8b4a2e673e50d2cabcc6863764267d0dac3d618d0b1c8cc0183</originalsourceid><addsrcrecordid>eNp1j8tOwzAURC0EEqGwZ5kfMNzr97aqeElFbGBtOdcuSpUmld2q9O9JFLasZjZnNIexe4QH1KgfKaeuS1wASg4gzAWrUEnNtVT6klUAVnOFIK7ZTSlbANBoRcXq9_DT7kJX79p-yKUOfay7tk8h1_vhlHK5ZVeb0JV095cL9vX89Ll65euPl7fVcs1JAh64psYFsMpQEiq4RgWRjJVJQxQUGiLjjLRGCWMjxEAyGnQRGiRHBOjkgsG8S3koJaeN3-fxWD57BD8Z-tnQT4Z-MhyR5YycQndIOabvfDyPxW-HY-7Hs_-iY9EWhEL5CybzWaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Maximal minors and linear powers</title><source>De Gruyter journals</source><creator>Bruns, Winfried ; Conca, Aldo ; Varbaro, Matteo</creator><creatorcontrib>Bruns, Winfried ; Conca, Aldo ; Varbaro, Matteo</creatorcontrib><description>An ideal in a polynomial ring has linear powers if all the powers of have a linear free resolution. We show that the ideal of maximal minors of a sufficiently general matrix with linear entries has linear powers. The required genericity is expressed in terms of the heights of the ideals of lower order minors. In particular we prove that every rational normal scroll has linear powers.</description><identifier>ISSN: 0075-4102</identifier><identifier>EISSN: 1435-5345</identifier><identifier>DOI: 10.1515/crelle-2013-0026</identifier><language>eng</language><publisher>De Gruyter</publisher><ispartof>Journal für die reine und angewandte Mathematik, 2015-05, Vol.2015 (702), p.41-53</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-5cb8a0746ce24a8b4a2e673e50d2cabcc6863764267d0dac3d618d0b1c8cc0183</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/crelle-2013-0026/pdf$$EPDF$$P50$$Gwalterdegruyter$$H</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/crelle-2013-0026/html$$EHTML$$P50$$Gwalterdegruyter$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,66497,68281</link.rule.ids></links><search><creatorcontrib>Bruns, Winfried</creatorcontrib><creatorcontrib>Conca, Aldo</creatorcontrib><creatorcontrib>Varbaro, Matteo</creatorcontrib><title>Maximal minors and linear powers</title><title>Journal für die reine und angewandte Mathematik</title><description>An ideal in a polynomial ring has linear powers if all the powers of have a linear free resolution. We show that the ideal of maximal minors of a sufficiently general matrix with linear entries has linear powers. The required genericity is expressed in terms of the heights of the ideals of lower order minors. In particular we prove that every rational normal scroll has linear powers.</description><issn>0075-4102</issn><issn>1435-5345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1j8tOwzAURC0EEqGwZ5kfMNzr97aqeElFbGBtOdcuSpUmld2q9O9JFLasZjZnNIexe4QH1KgfKaeuS1wASg4gzAWrUEnNtVT6klUAVnOFIK7ZTSlbANBoRcXq9_DT7kJX79p-yKUOfay7tk8h1_vhlHK5ZVeb0JV095cL9vX89Ll65euPl7fVcs1JAh64psYFsMpQEiq4RgWRjJVJQxQUGiLjjLRGCWMjxEAyGnQRGiRHBOjkgsG8S3koJaeN3-fxWD57BD8Z-tnQT4Z-MhyR5YycQndIOabvfDyPxW-HY-7Hs_-iY9EWhEL5CybzWaw</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Bruns, Winfried</creator><creator>Conca, Aldo</creator><creator>Varbaro, Matteo</creator><general>De Gruyter</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150501</creationdate><title>Maximal minors and linear powers</title><author>Bruns, Winfried ; Conca, Aldo ; Varbaro, Matteo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-5cb8a0746ce24a8b4a2e673e50d2cabcc6863764267d0dac3d618d0b1c8cc0183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bruns, Winfried</creatorcontrib><creatorcontrib>Conca, Aldo</creatorcontrib><creatorcontrib>Varbaro, Matteo</creatorcontrib><collection>CrossRef</collection><jtitle>Journal für die reine und angewandte Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bruns, Winfried</au><au>Conca, Aldo</au><au>Varbaro, Matteo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximal minors and linear powers</atitle><jtitle>Journal für die reine und angewandte Mathematik</jtitle><date>2015-05-01</date><risdate>2015</risdate><volume>2015</volume><issue>702</issue><spage>41</spage><epage>53</epage><pages>41-53</pages><issn>0075-4102</issn><eissn>1435-5345</eissn><abstract>An ideal in a polynomial ring has linear powers if all the powers of have a linear free resolution. We show that the ideal of maximal minors of a sufficiently general matrix with linear entries has linear powers. The required genericity is expressed in terms of the heights of the ideals of lower order minors. In particular we prove that every rational normal scroll has linear powers.</abstract><pub>De Gruyter</pub><doi>10.1515/crelle-2013-0026</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0075-4102
ispartof Journal für die reine und angewandte Mathematik, 2015-05, Vol.2015 (702), p.41-53
issn 0075-4102
1435-5345
language eng
recordid cdi_crossref_primary_10_1515_crelle_2013_0026
source De Gruyter journals
title Maximal minors and linear powers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T19%3A33%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-walterdegruyter_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximal%20minors%20and%20linear%20powers&rft.jtitle=Journal%20f%C3%BCr%20die%20reine%20und%20angewandte%20Mathematik&rft.au=Bruns,%20Winfried&rft.date=2015-05-01&rft.volume=2015&rft.issue=702&rft.spage=41&rft.epage=53&rft.pages=41-53&rft.issn=0075-4102&rft.eissn=1435-5345&rft_id=info:doi/10.1515/crelle-2013-0026&rft_dat=%3Cwalterdegruyter_cross%3E10_1515_crelle_2013_0026201570241%3C/walterdegruyter_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true