K3 surfaces with involution, equivariant analytic torsion, and automorphic forms on the moduli space, II: A structure theorem for r(M) > 10

We study the structure of the invariant of 3 surfaces with involution, which we obtained using equivariant analytic torsion. It was known before that the invariant is expressed as the Petersson norm of an automorphic form on the moduli space. When the rank of the invariant sublattice of the 3 lattic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal für die reine und angewandte Mathematik 2013-04, Vol.2013 (677), p.15-70, Article 15
1. Verfasser: Yoshikawa, Ken-Ichi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 70
container_issue 677
container_start_page 15
container_title Journal für die reine und angewandte Mathematik
container_volume 2013
creator Yoshikawa, Ken-Ichi
description We study the structure of the invariant of 3 surfaces with involution, which we obtained using equivariant analytic torsion. It was known before that the invariant is expressed as the Petersson norm of an automorphic form on the moduli space. When the rank of the invariant sublattice of the 3 lattice with respect to the involution is strictly bigger than 10, we prove that this automorphic form is expressed as the tensor product of an explicit Borcherds lift and Igusa's Siegel modular form.
doi_str_mv 10.1515/crelle.2012.009
format Article
fullrecord <record><control><sourceid>walterdegruyter_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1515_crelle_2012_009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1515_crelle_2012_009201367715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-ab9bd0911c8ff968bbd4b966048b24dcc6dc53427eb4a7a7f2ad4df93b3c1b213</originalsourceid><addsrcrecordid>eNp9kD1P5DAQhi10SOwBNa3LQyKLndjJ5orTrRAfK0A0UEf-CmuUxHtjG7QdLRX_kV-Cw1IhHcVoRnrnGWkehA4omVJO-bEC03VmmhOaTwmpt9CEsoJnvGD8B5oQUvGMUZLvoJ_ePxBCOK3yCXq9LLCP0AplPH6yYYnt8Oi6GKwbjrD5F-2jACuGgMUgunWwCgcH_iMVg8YiBtc7WC1T0DroPXYDDkuDe6djZ7FfpctHeLH4jefYB4gqRDDjhgPTjwiGX9eHb88vf1JRsoe2W9F5s__Zd9Hd2entyUV2dXO-OJlfZYqRWciErKUmNaVq1rZ1OZNSM1mXJWEzmTOtVKlV-jyvjGSiElWbC810WxeyUFTmtNhFx5u7Cpz3YNpmBbYXsG4oaUafzcZnM_psks9E8C-EskGMngII233D_d1wT6ILBrS5h7hOQ_PgIiSn_n9k6kVZVZQX71HSlYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>K3 surfaces with involution, equivariant analytic torsion, and automorphic forms on the moduli space, II: A structure theorem for r(M) &gt; 10</title><source>De Gruyter journals</source><creator>Yoshikawa, Ken-Ichi</creator><creatorcontrib>Yoshikawa, Ken-Ichi</creatorcontrib><description>We study the structure of the invariant of 3 surfaces with involution, which we obtained using equivariant analytic torsion. It was known before that the invariant is expressed as the Petersson norm of an automorphic form on the moduli space. When the rank of the invariant sublattice of the 3 lattice with respect to the involution is strictly bigger than 10, we prove that this automorphic form is expressed as the tensor product of an explicit Borcherds lift and Igusa's Siegel modular form.</description><identifier>ISSN: 0075-4102</identifier><identifier>EISSN: 1435-5345</identifier><identifier>DOI: 10.1515/crelle.2012.009</identifier><language>eng</language><publisher>De Gruyter</publisher><ispartof>Journal für die reine und angewandte Mathematik, 2013-04, Vol.2013 (677), p.15-70, Article 15</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-ab9bd0911c8ff968bbd4b966048b24dcc6dc53427eb4a7a7f2ad4df93b3c1b213</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/crelle.2012.009/pdf$$EPDF$$P50$$Gwalterdegruyter$$H</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/crelle.2012.009/html$$EHTML$$P50$$Gwalterdegruyter$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,66501,68285</link.rule.ids></links><search><creatorcontrib>Yoshikawa, Ken-Ichi</creatorcontrib><title>K3 surfaces with involution, equivariant analytic torsion, and automorphic forms on the moduli space, II: A structure theorem for r(M) &gt; 10</title><title>Journal für die reine und angewandte Mathematik</title><description>We study the structure of the invariant of 3 surfaces with involution, which we obtained using equivariant analytic torsion. It was known before that the invariant is expressed as the Petersson norm of an automorphic form on the moduli space. When the rank of the invariant sublattice of the 3 lattice with respect to the involution is strictly bigger than 10, we prove that this automorphic form is expressed as the tensor product of an explicit Borcherds lift and Igusa's Siegel modular form.</description><issn>0075-4102</issn><issn>1435-5345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kD1P5DAQhi10SOwBNa3LQyKLndjJ5orTrRAfK0A0UEf-CmuUxHtjG7QdLRX_kV-Cw1IhHcVoRnrnGWkehA4omVJO-bEC03VmmhOaTwmpt9CEsoJnvGD8B5oQUvGMUZLvoJ_ePxBCOK3yCXq9LLCP0AplPH6yYYnt8Oi6GKwbjrD5F-2jACuGgMUgunWwCgcH_iMVg8YiBtc7WC1T0DroPXYDDkuDe6djZ7FfpctHeLH4jefYB4gqRDDjhgPTjwiGX9eHb88vf1JRsoe2W9F5s__Zd9Hd2entyUV2dXO-OJlfZYqRWciErKUmNaVq1rZ1OZNSM1mXJWEzmTOtVKlV-jyvjGSiElWbC810WxeyUFTmtNhFx5u7Cpz3YNpmBbYXsG4oaUafzcZnM_psks9E8C-EskGMngII233D_d1wT6ILBrS5h7hOQ_PgIiSn_n9k6kVZVZQX71HSlYQ</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Yoshikawa, Ken-Ichi</creator><general>De Gruyter</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130401</creationdate><title>K3 surfaces with involution, equivariant analytic torsion, and automorphic forms on the moduli space, II: A structure theorem for r(M) &gt; 10</title><author>Yoshikawa, Ken-Ichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-ab9bd0911c8ff968bbd4b966048b24dcc6dc53427eb4a7a7f2ad4df93b3c1b213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoshikawa, Ken-Ichi</creatorcontrib><collection>CrossRef</collection><jtitle>Journal für die reine und angewandte Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoshikawa, Ken-Ichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>K3 surfaces with involution, equivariant analytic torsion, and automorphic forms on the moduli space, II: A structure theorem for r(M) &gt; 10</atitle><jtitle>Journal für die reine und angewandte Mathematik</jtitle><date>2013-04-01</date><risdate>2013</risdate><volume>2013</volume><issue>677</issue><spage>15</spage><epage>70</epage><pages>15-70</pages><artnum>15</artnum><issn>0075-4102</issn><eissn>1435-5345</eissn><abstract>We study the structure of the invariant of 3 surfaces with involution, which we obtained using equivariant analytic torsion. It was known before that the invariant is expressed as the Petersson norm of an automorphic form on the moduli space. When the rank of the invariant sublattice of the 3 lattice with respect to the involution is strictly bigger than 10, we prove that this automorphic form is expressed as the tensor product of an explicit Borcherds lift and Igusa's Siegel modular form.</abstract><pub>De Gruyter</pub><doi>10.1515/crelle.2012.009</doi><tpages>56</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0075-4102
ispartof Journal für die reine und angewandte Mathematik, 2013-04, Vol.2013 (677), p.15-70, Article 15
issn 0075-4102
1435-5345
language eng
recordid cdi_crossref_primary_10_1515_crelle_2012_009
source De Gruyter journals
title K3 surfaces with involution, equivariant analytic torsion, and automorphic forms on the moduli space, II: A structure theorem for r(M) > 10
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A54%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-walterdegruyter_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=K3%20surfaces%20with%20involution,%20equivariant%20analytic%20torsion,%20and%20automorphic%20forms%20on%20the%20moduli%20space,%20II:%20A%20structure%20theorem%20for%20r(M)%E2%80%89%3E%E2%80%8910&rft.jtitle=Journal%20f%C3%BCr%20die%20reine%20und%20angewandte%20Mathematik&rft.au=Yoshikawa,%20Ken-Ichi&rft.date=2013-04-01&rft.volume=2013&rft.issue=677&rft.spage=15&rft.epage=70&rft.pages=15-70&rft.artnum=15&rft.issn=0075-4102&rft.eissn=1435-5345&rft_id=info:doi/10.1515/crelle.2012.009&rft_dat=%3Cwalterdegruyter_cross%3E10_1515_crelle_2012_009201367715%3C/walterdegruyter_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true