K3 surfaces with involution, equivariant analytic torsion, and automorphic forms on the moduli space, II: A structure theorem for r(M) > 10
We study the structure of the invariant of 3 surfaces with involution, which we obtained using equivariant analytic torsion. It was known before that the invariant is expressed as the Petersson norm of an automorphic form on the moduli space. When the rank of the invariant sublattice of the 3 lattic...
Gespeichert in:
Veröffentlicht in: | Journal für die reine und angewandte Mathematik 2013-04, Vol.2013 (677), p.15-70, Article 15 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 70 |
---|---|
container_issue | 677 |
container_start_page | 15 |
container_title | Journal für die reine und angewandte Mathematik |
container_volume | 2013 |
creator | Yoshikawa, Ken-Ichi |
description | We study the structure of the invariant of
3 surfaces with involution, which we obtained using equivariant analytic torsion. It was known before that the invariant is expressed as the Petersson norm of an automorphic form on the moduli space. When the rank of the invariant sublattice of the
3 lattice with respect to the involution is strictly bigger than 10, we prove that this automorphic form is expressed as the tensor product of an explicit Borcherds lift and Igusa's Siegel modular form. |
doi_str_mv | 10.1515/crelle.2012.009 |
format | Article |
fullrecord | <record><control><sourceid>walterdegruyter_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1515_crelle_2012_009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1515_crelle_2012_009201367715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-ab9bd0911c8ff968bbd4b966048b24dcc6dc53427eb4a7a7f2ad4df93b3c1b213</originalsourceid><addsrcrecordid>eNp9kD1P5DAQhi10SOwBNa3LQyKLndjJ5orTrRAfK0A0UEf-CmuUxHtjG7QdLRX_kV-Cw1IhHcVoRnrnGWkehA4omVJO-bEC03VmmhOaTwmpt9CEsoJnvGD8B5oQUvGMUZLvoJ_ePxBCOK3yCXq9LLCP0AplPH6yYYnt8Oi6GKwbjrD5F-2jACuGgMUgunWwCgcH_iMVg8YiBtc7WC1T0DroPXYDDkuDe6djZ7FfpctHeLH4jefYB4gqRDDjhgPTjwiGX9eHb88vf1JRsoe2W9F5s__Zd9Hd2entyUV2dXO-OJlfZYqRWciErKUmNaVq1rZ1OZNSM1mXJWEzmTOtVKlV-jyvjGSiElWbC810WxeyUFTmtNhFx5u7Cpz3YNpmBbYXsG4oaUafzcZnM_psks9E8C-EskGMngII233D_d1wT6ILBrS5h7hOQ_PgIiSn_n9k6kVZVZQX71HSlYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>K3 surfaces with involution, equivariant analytic torsion, and automorphic forms on the moduli space, II: A structure theorem for r(M) > 10</title><source>De Gruyter journals</source><creator>Yoshikawa, Ken-Ichi</creator><creatorcontrib>Yoshikawa, Ken-Ichi</creatorcontrib><description>We study the structure of the invariant of
3 surfaces with involution, which we obtained using equivariant analytic torsion. It was known before that the invariant is expressed as the Petersson norm of an automorphic form on the moduli space. When the rank of the invariant sublattice of the
3 lattice with respect to the involution is strictly bigger than 10, we prove that this automorphic form is expressed as the tensor product of an explicit Borcherds lift and Igusa's Siegel modular form.</description><identifier>ISSN: 0075-4102</identifier><identifier>EISSN: 1435-5345</identifier><identifier>DOI: 10.1515/crelle.2012.009</identifier><language>eng</language><publisher>De Gruyter</publisher><ispartof>Journal für die reine und angewandte Mathematik, 2013-04, Vol.2013 (677), p.15-70, Article 15</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-ab9bd0911c8ff968bbd4b966048b24dcc6dc53427eb4a7a7f2ad4df93b3c1b213</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/crelle.2012.009/pdf$$EPDF$$P50$$Gwalterdegruyter$$H</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/crelle.2012.009/html$$EHTML$$P50$$Gwalterdegruyter$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,66501,68285</link.rule.ids></links><search><creatorcontrib>Yoshikawa, Ken-Ichi</creatorcontrib><title>K3 surfaces with involution, equivariant analytic torsion, and automorphic forms on the moduli space, II: A structure theorem for r(M) > 10</title><title>Journal für die reine und angewandte Mathematik</title><description>We study the structure of the invariant of
3 surfaces with involution, which we obtained using equivariant analytic torsion. It was known before that the invariant is expressed as the Petersson norm of an automorphic form on the moduli space. When the rank of the invariant sublattice of the
3 lattice with respect to the involution is strictly bigger than 10, we prove that this automorphic form is expressed as the tensor product of an explicit Borcherds lift and Igusa's Siegel modular form.</description><issn>0075-4102</issn><issn>1435-5345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kD1P5DAQhi10SOwBNa3LQyKLndjJ5orTrRAfK0A0UEf-CmuUxHtjG7QdLRX_kV-Cw1IhHcVoRnrnGWkehA4omVJO-bEC03VmmhOaTwmpt9CEsoJnvGD8B5oQUvGMUZLvoJ_ePxBCOK3yCXq9LLCP0AplPH6yYYnt8Oi6GKwbjrD5F-2jACuGgMUgunWwCgcH_iMVg8YiBtc7WC1T0DroPXYDDkuDe6djZ7FfpctHeLH4jefYB4gqRDDjhgPTjwiGX9eHb88vf1JRsoe2W9F5s__Zd9Hd2entyUV2dXO-OJlfZYqRWciErKUmNaVq1rZ1OZNSM1mXJWEzmTOtVKlV-jyvjGSiElWbC810WxeyUFTmtNhFx5u7Cpz3YNpmBbYXsG4oaUafzcZnM_psks9E8C-EskGMngII233D_d1wT6ILBrS5h7hOQ_PgIiSn_n9k6kVZVZQX71HSlYQ</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Yoshikawa, Ken-Ichi</creator><general>De Gruyter</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130401</creationdate><title>K3 surfaces with involution, equivariant analytic torsion, and automorphic forms on the moduli space, II: A structure theorem for r(M) > 10</title><author>Yoshikawa, Ken-Ichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-ab9bd0911c8ff968bbd4b966048b24dcc6dc53427eb4a7a7f2ad4df93b3c1b213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoshikawa, Ken-Ichi</creatorcontrib><collection>CrossRef</collection><jtitle>Journal für die reine und angewandte Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoshikawa, Ken-Ichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>K3 surfaces with involution, equivariant analytic torsion, and automorphic forms on the moduli space, II: A structure theorem for r(M) > 10</atitle><jtitle>Journal für die reine und angewandte Mathematik</jtitle><date>2013-04-01</date><risdate>2013</risdate><volume>2013</volume><issue>677</issue><spage>15</spage><epage>70</epage><pages>15-70</pages><artnum>15</artnum><issn>0075-4102</issn><eissn>1435-5345</eissn><abstract>We study the structure of the invariant of
3 surfaces with involution, which we obtained using equivariant analytic torsion. It was known before that the invariant is expressed as the Petersson norm of an automorphic form on the moduli space. When the rank of the invariant sublattice of the
3 lattice with respect to the involution is strictly bigger than 10, we prove that this automorphic form is expressed as the tensor product of an explicit Borcherds lift and Igusa's Siegel modular form.</abstract><pub>De Gruyter</pub><doi>10.1515/crelle.2012.009</doi><tpages>56</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0075-4102 |
ispartof | Journal für die reine und angewandte Mathematik, 2013-04, Vol.2013 (677), p.15-70, Article 15 |
issn | 0075-4102 1435-5345 |
language | eng |
recordid | cdi_crossref_primary_10_1515_crelle_2012_009 |
source | De Gruyter journals |
title | K3 surfaces with involution, equivariant analytic torsion, and automorphic forms on the moduli space, II: A structure theorem for r(M) > 10 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A54%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-walterdegruyter_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=K3%20surfaces%20with%20involution,%20equivariant%20analytic%20torsion,%20and%20automorphic%20forms%20on%20the%20moduli%20space,%20II:%20A%20structure%20theorem%20for%20r(M)%E2%80%89%3E%E2%80%8910&rft.jtitle=Journal%20f%C3%BCr%20die%20reine%20und%20angewandte%20Mathematik&rft.au=Yoshikawa,%20Ken-Ichi&rft.date=2013-04-01&rft.volume=2013&rft.issue=677&rft.spage=15&rft.epage=70&rft.pages=15-70&rft.artnum=15&rft.issn=0075-4102&rft.eissn=1435-5345&rft_id=info:doi/10.1515/crelle.2012.009&rft_dat=%3Cwalterdegruyter_cross%3E10_1515_crelle_2012_009201367715%3C/walterdegruyter_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |