On a class of fully nonlinear flows in Kähler geometry

In this paper, we study a class of fully nonlinear metric flows on Kähler manifolds, which includes the J-flow as a special case. We provide a sufficient and necessary condition for the long time convergence of the flow, generalizing the result of Song–Weinkove. As a consequence, under the given con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal für die reine und angewandte Mathematik 2011-04, Vol.2011 (653), p.189-220
Hauptverfasser: Fang, Hao, Lai, Mijia, Ma, Xinan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 220
container_issue 653
container_start_page 189
container_title Journal für die reine und angewandte Mathematik
container_volume 2011
creator Fang, Hao
Lai, Mijia
Ma, Xinan
description In this paper, we study a class of fully nonlinear metric flows on Kähler manifolds, which includes the J-flow as a special case. We provide a sufficient and necessary condition for the long time convergence of the flow, generalizing the result of Song–Weinkove. As a consequence, under the given condition, we solve the corresponding Euler equation, which is fully nonlinear of Monge–Ampère type. As an application, we also discuss a complex Monge–Ampère type equation including terms of mixed degrees, which was first posed by Chen.
doi_str_mv 10.1515/crelle.2011.027
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1515_crelle_2011_027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_QT4_DF7H6HN8_D</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-af6099ff53f5abb940850d4010533bb4ce8af56cbecf6a1f5a2d884267bf9f363</originalsourceid><addsrcrecordid>eNo9j8FKAzEURYMoWKtrt_mBqS-TvGRmKa21YrEIdR0yaZ6OpjOSVLT_45_4Y7ZUXN3NORcOY5cCRgIFXvkUYgyjEoQYQWmO2EAoiQVKhcdsAGCwUALKU3aW8ysAoDDlgJlFxx330eXMe-L0EeOWd30X2y64xCn2n5m3Hb__-X6JIfHn0K_DJm3P2Qm5mMPF3w7Z0_RmOZ4V88Xt3fh6Xnip9aZwpKGuiVASuqapFVQIKwUCUMqmUT5UjlD7JnjSTuygclVVqtSmoZqklkN2dfj1qc85BbLvqV27tLUC7L7bHrrtvtvuundGcTDavAlf_7hLb1YbadA-LpWdTM1Mzx4qO5G_TxlcMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On a class of fully nonlinear flows in Kähler geometry</title><source>De Gruyter journals</source><creator>Fang, Hao ; Lai, Mijia ; Ma, Xinan</creator><creatorcontrib>Fang, Hao ; Lai, Mijia ; Ma, Xinan</creatorcontrib><description>In this paper, we study a class of fully nonlinear metric flows on Kähler manifolds, which includes the J-flow as a special case. We provide a sufficient and necessary condition for the long time convergence of the flow, generalizing the result of Song–Weinkove. As a consequence, under the given condition, we solve the corresponding Euler equation, which is fully nonlinear of Monge–Ampère type. As an application, we also discuss a complex Monge–Ampère type equation including terms of mixed degrees, which was first posed by Chen.</description><identifier>ISSN: 0075-4102</identifier><identifier>EISSN: 1435-5345</identifier><identifier>DOI: 10.1515/crelle.2011.027</identifier><language>eng</language><publisher>Walter de Gruyter GmbH &amp; Co. KG</publisher><ispartof>Journal für die reine und angewandte Mathematik, 2011-04, Vol.2011 (653), p.189-220</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-af6099ff53f5abb940850d4010533bb4ce8af56cbecf6a1f5a2d884267bf9f363</citedby><cites>FETCH-LOGICAL-c366t-af6099ff53f5abb940850d4010533bb4ce8af56cbecf6a1f5a2d884267bf9f363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Fang, Hao</creatorcontrib><creatorcontrib>Lai, Mijia</creatorcontrib><creatorcontrib>Ma, Xinan</creatorcontrib><title>On a class of fully nonlinear flows in Kähler geometry</title><title>Journal für die reine und angewandte Mathematik</title><addtitle>Journal für die reine und angewandte Mathematik (Crelles Journal)</addtitle><description>In this paper, we study a class of fully nonlinear metric flows on Kähler manifolds, which includes the J-flow as a special case. We provide a sufficient and necessary condition for the long time convergence of the flow, generalizing the result of Song–Weinkove. As a consequence, under the given condition, we solve the corresponding Euler equation, which is fully nonlinear of Monge–Ampère type. As an application, we also discuss a complex Monge–Ampère type equation including terms of mixed degrees, which was first posed by Chen.</description><issn>0075-4102</issn><issn>1435-5345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9j8FKAzEURYMoWKtrt_mBqS-TvGRmKa21YrEIdR0yaZ6OpjOSVLT_45_4Y7ZUXN3NORcOY5cCRgIFXvkUYgyjEoQYQWmO2EAoiQVKhcdsAGCwUALKU3aW8ysAoDDlgJlFxx330eXMe-L0EeOWd30X2y64xCn2n5m3Hb__-X6JIfHn0K_DJm3P2Qm5mMPF3w7Z0_RmOZ4V88Xt3fh6Xnip9aZwpKGuiVASuqapFVQIKwUCUMqmUT5UjlD7JnjSTuygclVVqtSmoZqklkN2dfj1qc85BbLvqV27tLUC7L7bHrrtvtvuundGcTDavAlf_7hLb1YbadA-LpWdTM1Mzx4qO5G_TxlcMA</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Fang, Hao</creator><creator>Lai, Mijia</creator><creator>Ma, Xinan</creator><general>Walter de Gruyter GmbH &amp; Co. KG</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110401</creationdate><title>On a class of fully nonlinear flows in Kähler geometry</title><author>Fang, Hao ; Lai, Mijia ; Ma, Xinan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-af6099ff53f5abb940850d4010533bb4ce8af56cbecf6a1f5a2d884267bf9f363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Hao</creatorcontrib><creatorcontrib>Lai, Mijia</creatorcontrib><creatorcontrib>Ma, Xinan</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Journal für die reine und angewandte Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Hao</au><au>Lai, Mijia</au><au>Ma, Xinan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a class of fully nonlinear flows in Kähler geometry</atitle><jtitle>Journal für die reine und angewandte Mathematik</jtitle><addtitle>Journal für die reine und angewandte Mathematik (Crelles Journal)</addtitle><date>2011-04-01</date><risdate>2011</risdate><volume>2011</volume><issue>653</issue><spage>189</spage><epage>220</epage><pages>189-220</pages><issn>0075-4102</issn><eissn>1435-5345</eissn><abstract>In this paper, we study a class of fully nonlinear metric flows on Kähler manifolds, which includes the J-flow as a special case. We provide a sufficient and necessary condition for the long time convergence of the flow, generalizing the result of Song–Weinkove. As a consequence, under the given condition, we solve the corresponding Euler equation, which is fully nonlinear of Monge–Ampère type. As an application, we also discuss a complex Monge–Ampère type equation including terms of mixed degrees, which was first posed by Chen.</abstract><pub>Walter de Gruyter GmbH &amp; Co. KG</pub><doi>10.1515/crelle.2011.027</doi><tpages>32</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0075-4102
ispartof Journal für die reine und angewandte Mathematik, 2011-04, Vol.2011 (653), p.189-220
issn 0075-4102
1435-5345
language eng
recordid cdi_crossref_primary_10_1515_crelle_2011_027
source De Gruyter journals
title On a class of fully nonlinear flows in Kähler geometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A01%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20class%20of%20fully%20nonlinear%20flows%20in%20K%C3%A4hler%20geometry&rft.jtitle=Journal%20f%C3%BCr%20die%20reine%20und%20angewandte%20Mathematik&rft.au=Fang,%20Hao&rft.date=2011-04-01&rft.volume=2011&rft.issue=653&rft.spage=189&rft.epage=220&rft.pages=189-220&rft.issn=0075-4102&rft.eissn=1435-5345&rft_id=info:doi/10.1515/crelle.2011.027&rft_dat=%3Cistex_cross%3Eark_67375_QT4_DF7H6HN8_D%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true