Learning human actions from complex manipulation tasks and their transfer to robots in the circular factory

Process automation is essential to establish an economically viable circular factory in high-wage locations. This involves using autonomous production technologies, such as robots, to disassemble, reprocess, and reassemble used products with unknown conditions into the original or a new generation o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automatisierungstechnik : AT 2024-09, Vol.72 (9), p.844-859
Hauptverfasser: Zaremski, Manuel, Handwerker, Blanca, Dreher, Christian R. G., Leven, Fabian, Schneider, David, Roitberg, Alina, Stiefelhagen, Rainer, Neumann, Gerhard, Heizmann, Michael, Asfour, Tamim, Deml, Barbara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 859
container_issue 9
container_start_page 844
container_title Automatisierungstechnik : AT
container_volume 72
creator Zaremski, Manuel
Handwerker, Blanca
Dreher, Christian R. G.
Leven, Fabian
Schneider, David
Roitberg, Alina
Stiefelhagen, Rainer
Neumann, Gerhard
Heizmann, Michael
Asfour, Tamim
Deml, Barbara
description Process automation is essential to establish an economically viable circular factory in high-wage locations. This involves using autonomous production technologies, such as robots, to disassemble, reprocess, and reassemble used products with unknown conditions into the original or a new generation of products. This is a complex and highly dynamic issue that involves a high degree of uncertainty. To adapt robots to these conditions, learning from humans is necessary. Humans are the most flexible resource in the circular factory and they can adapt their knowledge and skills to new tasks and changing conditions. This paper presents an interdisciplinary research framework for learning human action knowledge from complex manipulation tasks through human observation and demonstration. The acquired knowledge will be described in a machine-executable form and will be transferred to industrial automation execution by robots in a circular factory. There are two primary research objectives. First, we investigate the multi-modal capture of human behavior and the description of human action knowledge. Second, the reproduction and generalization of learned actions, such as disassembly and assembly actions on robots is studied.
doi_str_mv 10.1515/auto-2024-0008
format Article
fullrecord <record><control><sourceid>walterdegruyter_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1515_auto_2024_0008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1515_auto_2024_0008729844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c177t-b9892b31bbe577284c191a63a08b5e12dbc2a09c0fcd7bfef9e9ca40e3c8925d3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKtb1_kDU5PMIxNwI8UXFNwouBuSTNKmnUnKTQbtvzeDbl3dA4fvcPkQuqVkRWta38kphYIRVhWEkPYMLRgVTdFw_nmOFoTytmAlZZfoKsY9IaxhhC7QYWMkeOe3eDeN0mOpkws-YgthxDqMx8F841y44zTIucJJxkPE0vc47YwDnED6aE0OAUNQIUXs_Nxh7UBnCrDNqwFO1-jCyiGam7-7RB9Pj-_rl2Lz9vy6ftgUmnKeCiVawVRJlTI156ytNBVUNqUkraoNZb3STBKhidU9V9ZYYYSWFTGlzmDdl0u0-t3VEGIEY7sjuFHCqaOkm1V1s6puVtXNqjJw_wt8ySEZ6M0WplMO3T5M4POr_4Ccibaqyh_PuHRJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Learning human actions from complex manipulation tasks and their transfer to robots in the circular factory</title><source>De Gruyter journals</source><creator>Zaremski, Manuel ; Handwerker, Blanca ; Dreher, Christian R. G. ; Leven, Fabian ; Schneider, David ; Roitberg, Alina ; Stiefelhagen, Rainer ; Neumann, Gerhard ; Heizmann, Michael ; Asfour, Tamim ; Deml, Barbara</creator><creatorcontrib>Zaremski, Manuel ; Handwerker, Blanca ; Dreher, Christian R. G. ; Leven, Fabian ; Schneider, David ; Roitberg, Alina ; Stiefelhagen, Rainer ; Neumann, Gerhard ; Heizmann, Michael ; Asfour, Tamim ; Deml, Barbara</creatorcontrib><description>Process automation is essential to establish an economically viable circular factory in high-wage locations. This involves using autonomous production technologies, such as robots, to disassemble, reprocess, and reassemble used products with unknown conditions into the original or a new generation of products. This is a complex and highly dynamic issue that involves a high degree of uncertainty. To adapt robots to these conditions, learning from humans is necessary. Humans are the most flexible resource in the circular factory and they can adapt their knowledge and skills to new tasks and changing conditions. This paper presents an interdisciplinary research framework for learning human action knowledge from complex manipulation tasks through human observation and demonstration. The acquired knowledge will be described in a machine-executable form and will be transferred to industrial automation execution by robots in a circular factory. There are two primary research objectives. First, we investigate the multi-modal capture of human behavior and the description of human action knowledge. Second, the reproduction and generalization of learned actions, such as disassembly and assembly actions on robots is studied.</description><identifier>ISSN: 0178-2312</identifier><identifier>EISSN: 2196-677X</identifier><identifier>DOI: 10.1515/auto-2024-0008</identifier><language>eng</language><publisher>De Gruyter</publisher><subject>action recognition ; Aktionserkennung ; Augen-/Blickregistrierung ; eye-tracking ; machine and deep learning methods ; maschinelle Lernverfahren ; multi-modal capturing of humans ; multimodale Erfassung des Menschen ; Programmieren durch Vormachen ; programming by demonstration</subject><ispartof>Automatisierungstechnik : AT, 2024-09, Vol.72 (9), p.844-859</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c177t-b9892b31bbe577284c191a63a08b5e12dbc2a09c0fcd7bfef9e9ca40e3c8925d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/auto-2024-0008/pdf$$EPDF$$P50$$Gwalterdegruyter$$H</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/auto-2024-0008/html$$EHTML$$P50$$Gwalterdegruyter$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,66754,68538</link.rule.ids></links><search><creatorcontrib>Zaremski, Manuel</creatorcontrib><creatorcontrib>Handwerker, Blanca</creatorcontrib><creatorcontrib>Dreher, Christian R. G.</creatorcontrib><creatorcontrib>Leven, Fabian</creatorcontrib><creatorcontrib>Schneider, David</creatorcontrib><creatorcontrib>Roitberg, Alina</creatorcontrib><creatorcontrib>Stiefelhagen, Rainer</creatorcontrib><creatorcontrib>Neumann, Gerhard</creatorcontrib><creatorcontrib>Heizmann, Michael</creatorcontrib><creatorcontrib>Asfour, Tamim</creatorcontrib><creatorcontrib>Deml, Barbara</creatorcontrib><title>Learning human actions from complex manipulation tasks and their transfer to robots in the circular factory</title><title>Automatisierungstechnik : AT</title><description>Process automation is essential to establish an economically viable circular factory in high-wage locations. This involves using autonomous production technologies, such as robots, to disassemble, reprocess, and reassemble used products with unknown conditions into the original or a new generation of products. This is a complex and highly dynamic issue that involves a high degree of uncertainty. To adapt robots to these conditions, learning from humans is necessary. Humans are the most flexible resource in the circular factory and they can adapt their knowledge and skills to new tasks and changing conditions. This paper presents an interdisciplinary research framework for learning human action knowledge from complex manipulation tasks through human observation and demonstration. The acquired knowledge will be described in a machine-executable form and will be transferred to industrial automation execution by robots in a circular factory. There are two primary research objectives. First, we investigate the multi-modal capture of human behavior and the description of human action knowledge. Second, the reproduction and generalization of learned actions, such as disassembly and assembly actions on robots is studied.</description><subject>action recognition</subject><subject>Aktionserkennung</subject><subject>Augen-/Blickregistrierung</subject><subject>eye-tracking</subject><subject>machine and deep learning methods</subject><subject>maschinelle Lernverfahren</subject><subject>multi-modal capturing of humans</subject><subject>multimodale Erfassung des Menschen</subject><subject>Programmieren durch Vormachen</subject><subject>programming by demonstration</subject><issn>0178-2312</issn><issn>2196-677X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKtb1_kDU5PMIxNwI8UXFNwouBuSTNKmnUnKTQbtvzeDbl3dA4fvcPkQuqVkRWta38kphYIRVhWEkPYMLRgVTdFw_nmOFoTytmAlZZfoKsY9IaxhhC7QYWMkeOe3eDeN0mOpkws-YgthxDqMx8F841y44zTIucJJxkPE0vc47YwDnED6aE0OAUNQIUXs_Nxh7UBnCrDNqwFO1-jCyiGam7-7RB9Pj-_rl2Lz9vy6ftgUmnKeCiVawVRJlTI156ytNBVUNqUkraoNZb3STBKhidU9V9ZYYYSWFTGlzmDdl0u0-t3VEGIEY7sjuFHCqaOkm1V1s6puVtXNqjJw_wt8ySEZ6M0WplMO3T5M4POr_4Ccibaqyh_PuHRJ</recordid><startdate>20240925</startdate><enddate>20240925</enddate><creator>Zaremski, Manuel</creator><creator>Handwerker, Blanca</creator><creator>Dreher, Christian R. G.</creator><creator>Leven, Fabian</creator><creator>Schneider, David</creator><creator>Roitberg, Alina</creator><creator>Stiefelhagen, Rainer</creator><creator>Neumann, Gerhard</creator><creator>Heizmann, Michael</creator><creator>Asfour, Tamim</creator><creator>Deml, Barbara</creator><general>De Gruyter</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240925</creationdate><title>Learning human actions from complex manipulation tasks and their transfer to robots in the circular factory</title><author>Zaremski, Manuel ; Handwerker, Blanca ; Dreher, Christian R. G. ; Leven, Fabian ; Schneider, David ; Roitberg, Alina ; Stiefelhagen, Rainer ; Neumann, Gerhard ; Heizmann, Michael ; Asfour, Tamim ; Deml, Barbara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c177t-b9892b31bbe577284c191a63a08b5e12dbc2a09c0fcd7bfef9e9ca40e3c8925d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>action recognition</topic><topic>Aktionserkennung</topic><topic>Augen-/Blickregistrierung</topic><topic>eye-tracking</topic><topic>machine and deep learning methods</topic><topic>maschinelle Lernverfahren</topic><topic>multi-modal capturing of humans</topic><topic>multimodale Erfassung des Menschen</topic><topic>Programmieren durch Vormachen</topic><topic>programming by demonstration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaremski, Manuel</creatorcontrib><creatorcontrib>Handwerker, Blanca</creatorcontrib><creatorcontrib>Dreher, Christian R. G.</creatorcontrib><creatorcontrib>Leven, Fabian</creatorcontrib><creatorcontrib>Schneider, David</creatorcontrib><creatorcontrib>Roitberg, Alina</creatorcontrib><creatorcontrib>Stiefelhagen, Rainer</creatorcontrib><creatorcontrib>Neumann, Gerhard</creatorcontrib><creatorcontrib>Heizmann, Michael</creatorcontrib><creatorcontrib>Asfour, Tamim</creatorcontrib><creatorcontrib>Deml, Barbara</creatorcontrib><collection>CrossRef</collection><jtitle>Automatisierungstechnik : AT</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zaremski, Manuel</au><au>Handwerker, Blanca</au><au>Dreher, Christian R. G.</au><au>Leven, Fabian</au><au>Schneider, David</au><au>Roitberg, Alina</au><au>Stiefelhagen, Rainer</au><au>Neumann, Gerhard</au><au>Heizmann, Michael</au><au>Asfour, Tamim</au><au>Deml, Barbara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning human actions from complex manipulation tasks and their transfer to robots in the circular factory</atitle><jtitle>Automatisierungstechnik : AT</jtitle><date>2024-09-25</date><risdate>2024</risdate><volume>72</volume><issue>9</issue><spage>844</spage><epage>859</epage><pages>844-859</pages><issn>0178-2312</issn><eissn>2196-677X</eissn><abstract>Process automation is essential to establish an economically viable circular factory in high-wage locations. This involves using autonomous production technologies, such as robots, to disassemble, reprocess, and reassemble used products with unknown conditions into the original or a new generation of products. This is a complex and highly dynamic issue that involves a high degree of uncertainty. To adapt robots to these conditions, learning from humans is necessary. Humans are the most flexible resource in the circular factory and they can adapt their knowledge and skills to new tasks and changing conditions. This paper presents an interdisciplinary research framework for learning human action knowledge from complex manipulation tasks through human observation and demonstration. The acquired knowledge will be described in a machine-executable form and will be transferred to industrial automation execution by robots in a circular factory. There are two primary research objectives. First, we investigate the multi-modal capture of human behavior and the description of human action knowledge. Second, the reproduction and generalization of learned actions, such as disassembly and assembly actions on robots is studied.</abstract><pub>De Gruyter</pub><doi>10.1515/auto-2024-0008</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0178-2312
ispartof Automatisierungstechnik : AT, 2024-09, Vol.72 (9), p.844-859
issn 0178-2312
2196-677X
language eng
recordid cdi_crossref_primary_10_1515_auto_2024_0008
source De Gruyter journals
subjects action recognition
Aktionserkennung
Augen-/Blickregistrierung
eye-tracking
machine and deep learning methods
maschinelle Lernverfahren
multi-modal capturing of humans
multimodale Erfassung des Menschen
Programmieren durch Vormachen
programming by demonstration
title Learning human actions from complex manipulation tasks and their transfer to robots in the circular factory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A51%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-walterdegruyter_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20human%20actions%20from%20complex%20manipulation%20tasks%20and%20their%20transfer%20to%20robots%20in%20the%20circular%20factory&rft.jtitle=Automatisierungstechnik%20:%20AT&rft.au=Zaremski,%20Manuel&rft.date=2024-09-25&rft.volume=72&rft.issue=9&rft.spage=844&rft.epage=859&rft.pages=844-859&rft.issn=0178-2312&rft.eissn=2196-677X&rft_id=info:doi/10.1515/auto-2024-0008&rft_dat=%3Cwalterdegruyter_cross%3E10_1515_auto_2024_0008729844%3C/walterdegruyter_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true