Learning human actions from complex manipulation tasks and their transfer to robots in the circular factory
Process automation is essential to establish an economically viable circular factory in high-wage locations. This involves using autonomous production technologies, such as robots, to disassemble, reprocess, and reassemble used products with unknown conditions into the original or a new generation o...
Gespeichert in:
Veröffentlicht in: | Automatisierungstechnik : AT 2024-09, Vol.72 (9), p.844-859 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 859 |
---|---|
container_issue | 9 |
container_start_page | 844 |
container_title | Automatisierungstechnik : AT |
container_volume | 72 |
creator | Zaremski, Manuel Handwerker, Blanca Dreher, Christian R. G. Leven, Fabian Schneider, David Roitberg, Alina Stiefelhagen, Rainer Neumann, Gerhard Heizmann, Michael Asfour, Tamim Deml, Barbara |
description | Process automation is essential to establish an economically viable circular factory in high-wage locations. This involves using autonomous production technologies, such as robots, to disassemble, reprocess, and reassemble used products with unknown conditions into the original or a new generation of products. This is a complex and highly dynamic issue that involves a high degree of uncertainty. To adapt robots to these conditions, learning from humans is necessary. Humans are the most flexible resource in the circular factory and they can adapt their knowledge and skills to new tasks and changing conditions. This paper presents an interdisciplinary research framework for learning human action knowledge from complex manipulation tasks through human observation and demonstration. The acquired knowledge will be described in a machine-executable form and will be transferred to industrial automation execution by robots in a circular factory. There are two primary research objectives. First, we investigate the multi-modal capture of human behavior and the description of human action knowledge. Second, the reproduction and generalization of learned actions, such as disassembly and assembly actions on robots is studied. |
doi_str_mv | 10.1515/auto-2024-0008 |
format | Article |
fullrecord | <record><control><sourceid>walterdegruyter_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1515_auto_2024_0008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1515_auto_2024_0008729844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c177t-b9892b31bbe577284c191a63a08b5e12dbc2a09c0fcd7bfef9e9ca40e3c8925d3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKtb1_kDU5PMIxNwI8UXFNwouBuSTNKmnUnKTQbtvzeDbl3dA4fvcPkQuqVkRWta38kphYIRVhWEkPYMLRgVTdFw_nmOFoTytmAlZZfoKsY9IaxhhC7QYWMkeOe3eDeN0mOpkws-YgthxDqMx8F841y44zTIucJJxkPE0vc47YwDnED6aE0OAUNQIUXs_Nxh7UBnCrDNqwFO1-jCyiGam7-7RB9Pj-_rl2Lz9vy6ftgUmnKeCiVawVRJlTI156ytNBVUNqUkraoNZb3STBKhidU9V9ZYYYSWFTGlzmDdl0u0-t3VEGIEY7sjuFHCqaOkm1V1s6puVtXNqjJw_wt8ySEZ6M0WplMO3T5M4POr_4Ccibaqyh_PuHRJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Learning human actions from complex manipulation tasks and their transfer to robots in the circular factory</title><source>De Gruyter journals</source><creator>Zaremski, Manuel ; Handwerker, Blanca ; Dreher, Christian R. G. ; Leven, Fabian ; Schneider, David ; Roitberg, Alina ; Stiefelhagen, Rainer ; Neumann, Gerhard ; Heizmann, Michael ; Asfour, Tamim ; Deml, Barbara</creator><creatorcontrib>Zaremski, Manuel ; Handwerker, Blanca ; Dreher, Christian R. G. ; Leven, Fabian ; Schneider, David ; Roitberg, Alina ; Stiefelhagen, Rainer ; Neumann, Gerhard ; Heizmann, Michael ; Asfour, Tamim ; Deml, Barbara</creatorcontrib><description>Process automation is essential to establish an economically viable circular factory in high-wage locations. This involves using autonomous production technologies, such as robots, to disassemble, reprocess, and reassemble used products with unknown conditions into the original or a new generation of products. This is a complex and highly dynamic issue that involves a high degree of uncertainty. To adapt robots to these conditions, learning from humans is necessary. Humans are the most flexible resource in the circular factory and they can adapt their knowledge and skills to new tasks and changing conditions. This paper presents an interdisciplinary research framework for learning human action knowledge from complex manipulation tasks through human observation and demonstration. The acquired knowledge will be described in a machine-executable form and will be transferred to industrial automation execution by robots in a circular factory. There are two primary research objectives. First, we investigate the multi-modal capture of human behavior and the description of human action knowledge. Second, the reproduction and generalization of learned actions, such as disassembly and assembly actions on robots is studied.</description><identifier>ISSN: 0178-2312</identifier><identifier>EISSN: 2196-677X</identifier><identifier>DOI: 10.1515/auto-2024-0008</identifier><language>eng</language><publisher>De Gruyter</publisher><subject>action recognition ; Aktionserkennung ; Augen-/Blickregistrierung ; eye-tracking ; machine and deep learning methods ; maschinelle Lernverfahren ; multi-modal capturing of humans ; multimodale Erfassung des Menschen ; Programmieren durch Vormachen ; programming by demonstration</subject><ispartof>Automatisierungstechnik : AT, 2024-09, Vol.72 (9), p.844-859</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c177t-b9892b31bbe577284c191a63a08b5e12dbc2a09c0fcd7bfef9e9ca40e3c8925d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/auto-2024-0008/pdf$$EPDF$$P50$$Gwalterdegruyter$$H</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/auto-2024-0008/html$$EHTML$$P50$$Gwalterdegruyter$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,66754,68538</link.rule.ids></links><search><creatorcontrib>Zaremski, Manuel</creatorcontrib><creatorcontrib>Handwerker, Blanca</creatorcontrib><creatorcontrib>Dreher, Christian R. G.</creatorcontrib><creatorcontrib>Leven, Fabian</creatorcontrib><creatorcontrib>Schneider, David</creatorcontrib><creatorcontrib>Roitberg, Alina</creatorcontrib><creatorcontrib>Stiefelhagen, Rainer</creatorcontrib><creatorcontrib>Neumann, Gerhard</creatorcontrib><creatorcontrib>Heizmann, Michael</creatorcontrib><creatorcontrib>Asfour, Tamim</creatorcontrib><creatorcontrib>Deml, Barbara</creatorcontrib><title>Learning human actions from complex manipulation tasks and their transfer to robots in the circular factory</title><title>Automatisierungstechnik : AT</title><description>Process automation is essential to establish an economically viable circular factory in high-wage locations. This involves using autonomous production technologies, such as robots, to disassemble, reprocess, and reassemble used products with unknown conditions into the original or a new generation of products. This is a complex and highly dynamic issue that involves a high degree of uncertainty. To adapt robots to these conditions, learning from humans is necessary. Humans are the most flexible resource in the circular factory and they can adapt their knowledge and skills to new tasks and changing conditions. This paper presents an interdisciplinary research framework for learning human action knowledge from complex manipulation tasks through human observation and demonstration. The acquired knowledge will be described in a machine-executable form and will be transferred to industrial automation execution by robots in a circular factory. There are two primary research objectives. First, we investigate the multi-modal capture of human behavior and the description of human action knowledge. Second, the reproduction and generalization of learned actions, such as disassembly and assembly actions on robots is studied.</description><subject>action recognition</subject><subject>Aktionserkennung</subject><subject>Augen-/Blickregistrierung</subject><subject>eye-tracking</subject><subject>machine and deep learning methods</subject><subject>maschinelle Lernverfahren</subject><subject>multi-modal capturing of humans</subject><subject>multimodale Erfassung des Menschen</subject><subject>Programmieren durch Vormachen</subject><subject>programming by demonstration</subject><issn>0178-2312</issn><issn>2196-677X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKtb1_kDU5PMIxNwI8UXFNwouBuSTNKmnUnKTQbtvzeDbl3dA4fvcPkQuqVkRWta38kphYIRVhWEkPYMLRgVTdFw_nmOFoTytmAlZZfoKsY9IaxhhC7QYWMkeOe3eDeN0mOpkws-YgthxDqMx8F841y44zTIucJJxkPE0vc47YwDnED6aE0OAUNQIUXs_Nxh7UBnCrDNqwFO1-jCyiGam7-7RB9Pj-_rl2Lz9vy6ftgUmnKeCiVawVRJlTI156ytNBVUNqUkraoNZb3STBKhidU9V9ZYYYSWFTGlzmDdl0u0-t3VEGIEY7sjuFHCqaOkm1V1s6puVtXNqjJw_wt8ySEZ6M0WplMO3T5M4POr_4Ccibaqyh_PuHRJ</recordid><startdate>20240925</startdate><enddate>20240925</enddate><creator>Zaremski, Manuel</creator><creator>Handwerker, Blanca</creator><creator>Dreher, Christian R. G.</creator><creator>Leven, Fabian</creator><creator>Schneider, David</creator><creator>Roitberg, Alina</creator><creator>Stiefelhagen, Rainer</creator><creator>Neumann, Gerhard</creator><creator>Heizmann, Michael</creator><creator>Asfour, Tamim</creator><creator>Deml, Barbara</creator><general>De Gruyter</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240925</creationdate><title>Learning human actions from complex manipulation tasks and their transfer to robots in the circular factory</title><author>Zaremski, Manuel ; Handwerker, Blanca ; Dreher, Christian R. G. ; Leven, Fabian ; Schneider, David ; Roitberg, Alina ; Stiefelhagen, Rainer ; Neumann, Gerhard ; Heizmann, Michael ; Asfour, Tamim ; Deml, Barbara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c177t-b9892b31bbe577284c191a63a08b5e12dbc2a09c0fcd7bfef9e9ca40e3c8925d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>action recognition</topic><topic>Aktionserkennung</topic><topic>Augen-/Blickregistrierung</topic><topic>eye-tracking</topic><topic>machine and deep learning methods</topic><topic>maschinelle Lernverfahren</topic><topic>multi-modal capturing of humans</topic><topic>multimodale Erfassung des Menschen</topic><topic>Programmieren durch Vormachen</topic><topic>programming by demonstration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaremski, Manuel</creatorcontrib><creatorcontrib>Handwerker, Blanca</creatorcontrib><creatorcontrib>Dreher, Christian R. G.</creatorcontrib><creatorcontrib>Leven, Fabian</creatorcontrib><creatorcontrib>Schneider, David</creatorcontrib><creatorcontrib>Roitberg, Alina</creatorcontrib><creatorcontrib>Stiefelhagen, Rainer</creatorcontrib><creatorcontrib>Neumann, Gerhard</creatorcontrib><creatorcontrib>Heizmann, Michael</creatorcontrib><creatorcontrib>Asfour, Tamim</creatorcontrib><creatorcontrib>Deml, Barbara</creatorcontrib><collection>CrossRef</collection><jtitle>Automatisierungstechnik : AT</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zaremski, Manuel</au><au>Handwerker, Blanca</au><au>Dreher, Christian R. G.</au><au>Leven, Fabian</au><au>Schneider, David</au><au>Roitberg, Alina</au><au>Stiefelhagen, Rainer</au><au>Neumann, Gerhard</au><au>Heizmann, Michael</au><au>Asfour, Tamim</au><au>Deml, Barbara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning human actions from complex manipulation tasks and their transfer to robots in the circular factory</atitle><jtitle>Automatisierungstechnik : AT</jtitle><date>2024-09-25</date><risdate>2024</risdate><volume>72</volume><issue>9</issue><spage>844</spage><epage>859</epage><pages>844-859</pages><issn>0178-2312</issn><eissn>2196-677X</eissn><abstract>Process automation is essential to establish an economically viable circular factory in high-wage locations. This involves using autonomous production technologies, such as robots, to disassemble, reprocess, and reassemble used products with unknown conditions into the original or a new generation of products. This is a complex and highly dynamic issue that involves a high degree of uncertainty. To adapt robots to these conditions, learning from humans is necessary. Humans are the most flexible resource in the circular factory and they can adapt their knowledge and skills to new tasks and changing conditions. This paper presents an interdisciplinary research framework for learning human action knowledge from complex manipulation tasks through human observation and demonstration. The acquired knowledge will be described in a machine-executable form and will be transferred to industrial automation execution by robots in a circular factory. There are two primary research objectives. First, we investigate the multi-modal capture of human behavior and the description of human action knowledge. Second, the reproduction and generalization of learned actions, such as disassembly and assembly actions on robots is studied.</abstract><pub>De Gruyter</pub><doi>10.1515/auto-2024-0008</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-2312 |
ispartof | Automatisierungstechnik : AT, 2024-09, Vol.72 (9), p.844-859 |
issn | 0178-2312 2196-677X |
language | eng |
recordid | cdi_crossref_primary_10_1515_auto_2024_0008 |
source | De Gruyter journals |
subjects | action recognition Aktionserkennung Augen-/Blickregistrierung eye-tracking machine and deep learning methods maschinelle Lernverfahren multi-modal capturing of humans multimodale Erfassung des Menschen Programmieren durch Vormachen programming by demonstration |
title | Learning human actions from complex manipulation tasks and their transfer to robots in the circular factory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A51%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-walterdegruyter_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20human%20actions%20from%20complex%20manipulation%20tasks%20and%20their%20transfer%20to%20robots%20in%20the%20circular%20factory&rft.jtitle=Automatisierungstechnik%20:%20AT&rft.au=Zaremski,%20Manuel&rft.date=2024-09-25&rft.volume=72&rft.issue=9&rft.spage=844&rft.epage=859&rft.pages=844-859&rft.issn=0178-2312&rft.eissn=2196-677X&rft_id=info:doi/10.1515/auto-2024-0008&rft_dat=%3Cwalterdegruyter_cross%3E10_1515_auto_2024_0008729844%3C/walterdegruyter_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |