A Continuation Result for Forced Oscillations of Constrained Motion Problems with Infinite Delay
We prove a global continuation result for T-periodic solutions of a T-periodic parametrized second order retarded functional differential equation on a boundaryless compact manifold with nonzero Euler-Poincaré characteristic. The approach is based on the fixed point index theory for locally compact...
Gespeichert in:
Veröffentlicht in: | Advanced nonlinear studies 2013-05, Vol.13 (2), p.263-278 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 278 |
---|---|
container_issue | 2 |
container_start_page | 263 |
container_title | Advanced nonlinear studies |
container_volume | 13 |
creator | Benevieri, Pierluigi Furi, Massimo Pera, Maria Patrizia Calamai, Alessandro |
description | We prove a global continuation result for T-periodic solutions of a T-periodic parametrized second order retarded functional differential equation on a boundaryless compact manifold with nonzero Euler-Poincaré characteristic. The approach is based on the fixed point index theory for locally compact maps on ANRs. As an application, we prove the existence of forced oscillations of retarded functional motion equations defined on topologically nontrivial compact constraints. This existence result is obtained under the assumption that the frictional coefficient is nonzero, and we conjecture that it is still true in the frictionless case. |
doi_str_mv | 10.1515/ans-2013-0201 |
format | Article |
fullrecord | <record><control><sourceid>walterdegruyter_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1515_ans_2013_0201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1515_ans_2013_0201132263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-cdb1cfe77c3e685258a6360ffd6093c045396ad8806da9e9f3ec96686b2d4eed3</originalsourceid><addsrcrecordid>eNptkE9LAzEQxYMoWLRH7_kC0fzZpLt4KtVqoVIRPa9pMtGUbSJJltJv77b16BxmBt57w_BD6IbRWyaZvNMhE06ZIHToZ2jEmWoIFRN5jkZMCkWYUPISjXPe0KGqhldSjtDnFM9iKD70uvgY8BvkvivYxYTnMRmweJWN77qjmnF0B3suSfswaC_xGHpNcd3BNuOdL994EZwPvgB-gE7vr9GF012G8d-8Qh_zx_fZM1munhaz6ZIYwetCjF0z42AyMQJULbmstRKKOmcVbYShlRSN0rauqbK6gcYJMI1StVpzWwFYcYXI6a5JMecErv1JfqvTvmW0PRBqB0LtgVB7IDT470_-ne4KJAtfqd8PS7uJfQrDp__nmOBcCfELSqduEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Continuation Result for Forced Oscillations of Constrained Motion Problems with Infinite Delay</title><source>De Gruyter Open Access Journals</source><source>Alma/SFX Local Collection</source><creator>Benevieri, Pierluigi ; Furi, Massimo ; Pera, Maria Patrizia ; Calamai, Alessandro</creator><creatorcontrib>Benevieri, Pierluigi ; Furi, Massimo ; Pera, Maria Patrizia ; Calamai, Alessandro</creatorcontrib><description>We prove a global continuation result for T-periodic solutions of a T-periodic parametrized second order retarded functional differential equation on a boundaryless compact manifold with nonzero Euler-Poincaré characteristic. The approach is based on the fixed point index theory for locally compact maps on ANRs. As an application, we prove the existence of forced oscillations of retarded functional motion equations defined on topologically nontrivial compact constraints. This existence result is obtained under the assumption that the frictional coefficient is nonzero, and we conjecture that it is still true in the frictionless case.</description><identifier>ISSN: 1536-1365</identifier><identifier>EISSN: 2169-0375</identifier><identifier>DOI: 10.1515/ans-2013-0201</identifier><language>eng</language><publisher>Advanced Nonlinear Studies, Inc</publisher><subject>fixed point index theory ; motion problems on manifolds ; periodic solutions ; Retarded functional differential equations</subject><ispartof>Advanced nonlinear studies, 2013-05, Vol.13 (2), p.263-278</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-cdb1cfe77c3e685258a6360ffd6093c045396ad8806da9e9f3ec96686b2d4eed3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/ans-2013-0201/pdf$$EPDF$$P50$$Gwalterdegruyter$$H</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/ans-2013-0201/html$$EHTML$$P50$$Gwalterdegruyter$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,66901,68685</link.rule.ids></links><search><creatorcontrib>Benevieri, Pierluigi</creatorcontrib><creatorcontrib>Furi, Massimo</creatorcontrib><creatorcontrib>Pera, Maria Patrizia</creatorcontrib><creatorcontrib>Calamai, Alessandro</creatorcontrib><title>A Continuation Result for Forced Oscillations of Constrained Motion Problems with Infinite Delay</title><title>Advanced nonlinear studies</title><description>We prove a global continuation result for T-periodic solutions of a T-periodic parametrized second order retarded functional differential equation on a boundaryless compact manifold with nonzero Euler-Poincaré characteristic. The approach is based on the fixed point index theory for locally compact maps on ANRs. As an application, we prove the existence of forced oscillations of retarded functional motion equations defined on topologically nontrivial compact constraints. This existence result is obtained under the assumption that the frictional coefficient is nonzero, and we conjecture that it is still true in the frictionless case.</description><subject>fixed point index theory</subject><subject>motion problems on manifolds</subject><subject>periodic solutions</subject><subject>Retarded functional differential equations</subject><issn>1536-1365</issn><issn>2169-0375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNptkE9LAzEQxYMoWLRH7_kC0fzZpLt4KtVqoVIRPa9pMtGUbSJJltJv77b16BxmBt57w_BD6IbRWyaZvNMhE06ZIHToZ2jEmWoIFRN5jkZMCkWYUPISjXPe0KGqhldSjtDnFM9iKD70uvgY8BvkvivYxYTnMRmweJWN77qjmnF0B3suSfswaC_xGHpNcd3BNuOdL994EZwPvgB-gE7vr9GF012G8d-8Qh_zx_fZM1munhaz6ZIYwetCjF0z42AyMQJULbmstRKKOmcVbYShlRSN0rauqbK6gcYJMI1StVpzWwFYcYXI6a5JMecErv1JfqvTvmW0PRBqB0LtgVB7IDT470_-ne4KJAtfqd8PS7uJfQrDp__nmOBcCfELSqduEg</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Benevieri, Pierluigi</creator><creator>Furi, Massimo</creator><creator>Pera, Maria Patrizia</creator><creator>Calamai, Alessandro</creator><general>Advanced Nonlinear Studies, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130501</creationdate><title>A Continuation Result for Forced Oscillations of Constrained Motion Problems with Infinite Delay</title><author>Benevieri, Pierluigi ; Furi, Massimo ; Pera, Maria Patrizia ; Calamai, Alessandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-cdb1cfe77c3e685258a6360ffd6093c045396ad8806da9e9f3ec96686b2d4eed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>fixed point index theory</topic><topic>motion problems on manifolds</topic><topic>periodic solutions</topic><topic>Retarded functional differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benevieri, Pierluigi</creatorcontrib><creatorcontrib>Furi, Massimo</creatorcontrib><creatorcontrib>Pera, Maria Patrizia</creatorcontrib><creatorcontrib>Calamai, Alessandro</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced nonlinear studies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benevieri, Pierluigi</au><au>Furi, Massimo</au><au>Pera, Maria Patrizia</au><au>Calamai, Alessandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Continuation Result for Forced Oscillations of Constrained Motion Problems with Infinite Delay</atitle><jtitle>Advanced nonlinear studies</jtitle><date>2013-05-01</date><risdate>2013</risdate><volume>13</volume><issue>2</issue><spage>263</spage><epage>278</epage><pages>263-278</pages><issn>1536-1365</issn><eissn>2169-0375</eissn><abstract>We prove a global continuation result for T-periodic solutions of a T-periodic parametrized second order retarded functional differential equation on a boundaryless compact manifold with nonzero Euler-Poincaré characteristic. The approach is based on the fixed point index theory for locally compact maps on ANRs. As an application, we prove the existence of forced oscillations of retarded functional motion equations defined on topologically nontrivial compact constraints. This existence result is obtained under the assumption that the frictional coefficient is nonzero, and we conjecture that it is still true in the frictionless case.</abstract><pub>Advanced Nonlinear Studies, Inc</pub><doi>10.1515/ans-2013-0201</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1536-1365 |
ispartof | Advanced nonlinear studies, 2013-05, Vol.13 (2), p.263-278 |
issn | 1536-1365 2169-0375 |
language | eng |
recordid | cdi_crossref_primary_10_1515_ans_2013_0201 |
source | De Gruyter Open Access Journals; Alma/SFX Local Collection |
subjects | fixed point index theory motion problems on manifolds periodic solutions Retarded functional differential equations |
title | A Continuation Result for Forced Oscillations of Constrained Motion Problems with Infinite Delay |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T19%3A39%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-walterdegruyter_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Continuation%20Result%20for%20Forced%20Oscillations%20of%20Constrained%20Motion%20Problems%20with%20Infinite%20Delay&rft.jtitle=Advanced%20nonlinear%20studies&rft.au=Benevieri,%20Pierluigi&rft.date=2013-05-01&rft.volume=13&rft.issue=2&rft.spage=263&rft.epage=278&rft.pages=263-278&rft.issn=1536-1365&rft.eissn=2169-0375&rft_id=info:doi/10.1515/ans-2013-0201&rft_dat=%3Cwalterdegruyter_cross%3E10_1515_ans_2013_0201132263%3C/walterdegruyter_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |