A Continuation Result for Forced Oscillations of Constrained Motion Problems with Infinite Delay

We prove a global continuation result for T-periodic solutions of a T-periodic parametrized second order retarded functional differential equation on a boundaryless compact manifold with nonzero Euler-Poincaré characteristic. The approach is based on the fixed point index theory for locally compact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced nonlinear studies 2013-05, Vol.13 (2), p.263-278
Hauptverfasser: Benevieri, Pierluigi, Furi, Massimo, Pera, Maria Patrizia, Calamai, Alessandro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 278
container_issue 2
container_start_page 263
container_title Advanced nonlinear studies
container_volume 13
creator Benevieri, Pierluigi
Furi, Massimo
Pera, Maria Patrizia
Calamai, Alessandro
description We prove a global continuation result for T-periodic solutions of a T-periodic parametrized second order retarded functional differential equation on a boundaryless compact manifold with nonzero Euler-Poincaré characteristic. The approach is based on the fixed point index theory for locally compact maps on ANRs. As an application, we prove the existence of forced oscillations of retarded functional motion equations defined on topologically nontrivial compact constraints. This existence result is obtained under the assumption that the frictional coefficient is nonzero, and we conjecture that it is still true in the frictionless case.
doi_str_mv 10.1515/ans-2013-0201
format Article
fullrecord <record><control><sourceid>walterdegruyter_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1515_ans_2013_0201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1515_ans_2013_0201132263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-cdb1cfe77c3e685258a6360ffd6093c045396ad8806da9e9f3ec96686b2d4eed3</originalsourceid><addsrcrecordid>eNptkE9LAzEQxYMoWLRH7_kC0fzZpLt4KtVqoVIRPa9pMtGUbSJJltJv77b16BxmBt57w_BD6IbRWyaZvNMhE06ZIHToZ2jEmWoIFRN5jkZMCkWYUPISjXPe0KGqhldSjtDnFM9iKD70uvgY8BvkvivYxYTnMRmweJWN77qjmnF0B3suSfswaC_xGHpNcd3BNuOdL994EZwPvgB-gE7vr9GF012G8d-8Qh_zx_fZM1munhaz6ZIYwetCjF0z42AyMQJULbmstRKKOmcVbYShlRSN0rauqbK6gcYJMI1StVpzWwFYcYXI6a5JMecErv1JfqvTvmW0PRBqB0LtgVB7IDT470_-ne4KJAtfqd8PS7uJfQrDp__nmOBcCfELSqduEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Continuation Result for Forced Oscillations of Constrained Motion Problems with Infinite Delay</title><source>De Gruyter Open Access Journals</source><source>Alma/SFX Local Collection</source><creator>Benevieri, Pierluigi ; Furi, Massimo ; Pera, Maria Patrizia ; Calamai, Alessandro</creator><creatorcontrib>Benevieri, Pierluigi ; Furi, Massimo ; Pera, Maria Patrizia ; Calamai, Alessandro</creatorcontrib><description>We prove a global continuation result for T-periodic solutions of a T-periodic parametrized second order retarded functional differential equation on a boundaryless compact manifold with nonzero Euler-Poincaré characteristic. The approach is based on the fixed point index theory for locally compact maps on ANRs. As an application, we prove the existence of forced oscillations of retarded functional motion equations defined on topologically nontrivial compact constraints. This existence result is obtained under the assumption that the frictional coefficient is nonzero, and we conjecture that it is still true in the frictionless case.</description><identifier>ISSN: 1536-1365</identifier><identifier>EISSN: 2169-0375</identifier><identifier>DOI: 10.1515/ans-2013-0201</identifier><language>eng</language><publisher>Advanced Nonlinear Studies, Inc</publisher><subject>fixed point index theory ; motion problems on manifolds ; periodic solutions ; Retarded functional differential equations</subject><ispartof>Advanced nonlinear studies, 2013-05, Vol.13 (2), p.263-278</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-cdb1cfe77c3e685258a6360ffd6093c045396ad8806da9e9f3ec96686b2d4eed3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/ans-2013-0201/pdf$$EPDF$$P50$$Gwalterdegruyter$$H</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/ans-2013-0201/html$$EHTML$$P50$$Gwalterdegruyter$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,66901,68685</link.rule.ids></links><search><creatorcontrib>Benevieri, Pierluigi</creatorcontrib><creatorcontrib>Furi, Massimo</creatorcontrib><creatorcontrib>Pera, Maria Patrizia</creatorcontrib><creatorcontrib>Calamai, Alessandro</creatorcontrib><title>A Continuation Result for Forced Oscillations of Constrained Motion Problems with Infinite Delay</title><title>Advanced nonlinear studies</title><description>We prove a global continuation result for T-periodic solutions of a T-periodic parametrized second order retarded functional differential equation on a boundaryless compact manifold with nonzero Euler-Poincaré characteristic. The approach is based on the fixed point index theory for locally compact maps on ANRs. As an application, we prove the existence of forced oscillations of retarded functional motion equations defined on topologically nontrivial compact constraints. This existence result is obtained under the assumption that the frictional coefficient is nonzero, and we conjecture that it is still true in the frictionless case.</description><subject>fixed point index theory</subject><subject>motion problems on manifolds</subject><subject>periodic solutions</subject><subject>Retarded functional differential equations</subject><issn>1536-1365</issn><issn>2169-0375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNptkE9LAzEQxYMoWLRH7_kC0fzZpLt4KtVqoVIRPa9pMtGUbSJJltJv77b16BxmBt57w_BD6IbRWyaZvNMhE06ZIHToZ2jEmWoIFRN5jkZMCkWYUPISjXPe0KGqhldSjtDnFM9iKD70uvgY8BvkvivYxYTnMRmweJWN77qjmnF0B3suSfswaC_xGHpNcd3BNuOdL994EZwPvgB-gE7vr9GF012G8d-8Qh_zx_fZM1munhaz6ZIYwetCjF0z42AyMQJULbmstRKKOmcVbYShlRSN0rauqbK6gcYJMI1StVpzWwFYcYXI6a5JMecErv1JfqvTvmW0PRBqB0LtgVB7IDT470_-ne4KJAtfqd8PS7uJfQrDp__nmOBcCfELSqduEg</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Benevieri, Pierluigi</creator><creator>Furi, Massimo</creator><creator>Pera, Maria Patrizia</creator><creator>Calamai, Alessandro</creator><general>Advanced Nonlinear Studies, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130501</creationdate><title>A Continuation Result for Forced Oscillations of Constrained Motion Problems with Infinite Delay</title><author>Benevieri, Pierluigi ; Furi, Massimo ; Pera, Maria Patrizia ; Calamai, Alessandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-cdb1cfe77c3e685258a6360ffd6093c045396ad8806da9e9f3ec96686b2d4eed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>fixed point index theory</topic><topic>motion problems on manifolds</topic><topic>periodic solutions</topic><topic>Retarded functional differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benevieri, Pierluigi</creatorcontrib><creatorcontrib>Furi, Massimo</creatorcontrib><creatorcontrib>Pera, Maria Patrizia</creatorcontrib><creatorcontrib>Calamai, Alessandro</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced nonlinear studies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benevieri, Pierluigi</au><au>Furi, Massimo</au><au>Pera, Maria Patrizia</au><au>Calamai, Alessandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Continuation Result for Forced Oscillations of Constrained Motion Problems with Infinite Delay</atitle><jtitle>Advanced nonlinear studies</jtitle><date>2013-05-01</date><risdate>2013</risdate><volume>13</volume><issue>2</issue><spage>263</spage><epage>278</epage><pages>263-278</pages><issn>1536-1365</issn><eissn>2169-0375</eissn><abstract>We prove a global continuation result for T-periodic solutions of a T-periodic parametrized second order retarded functional differential equation on a boundaryless compact manifold with nonzero Euler-Poincaré characteristic. The approach is based on the fixed point index theory for locally compact maps on ANRs. As an application, we prove the existence of forced oscillations of retarded functional motion equations defined on topologically nontrivial compact constraints. This existence result is obtained under the assumption that the frictional coefficient is nonzero, and we conjecture that it is still true in the frictionless case.</abstract><pub>Advanced Nonlinear Studies, Inc</pub><doi>10.1515/ans-2013-0201</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1536-1365
ispartof Advanced nonlinear studies, 2013-05, Vol.13 (2), p.263-278
issn 1536-1365
2169-0375
language eng
recordid cdi_crossref_primary_10_1515_ans_2013_0201
source De Gruyter Open Access Journals; Alma/SFX Local Collection
subjects fixed point index theory
motion problems on manifolds
periodic solutions
Retarded functional differential equations
title A Continuation Result for Forced Oscillations of Constrained Motion Problems with Infinite Delay
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T19%3A39%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-walterdegruyter_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Continuation%20Result%20for%20Forced%20Oscillations%20of%20Constrained%20Motion%20Problems%20with%20Infinite%20Delay&rft.jtitle=Advanced%20nonlinear%20studies&rft.au=Benevieri,%20Pierluigi&rft.date=2013-05-01&rft.volume=13&rft.issue=2&rft.spage=263&rft.epage=278&rft.pages=263-278&rft.issn=1536-1365&rft.eissn=2169-0375&rft_id=info:doi/10.1515/ans-2013-0201&rft_dat=%3Cwalterdegruyter_cross%3E10_1515_ans_2013_0201132263%3C/walterdegruyter_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true