Equations of p-Laplacian Type in Unbounded Domains
This work is devoted to study the existence of solutions to equations of the p Laplacian type in unbounded domains. We prove the existence of at least one solution, and under further assumptions, the existence of infinitely many solutions. We apply the mountain pass theorem in weighted Sobolev space...
Gespeichert in:
Veröffentlicht in: | Advanced nonlinear studies 2002-08, Vol.2 (3), p.237-250 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 250 |
---|---|
container_issue | 3 |
container_start_page | 237 |
container_title | Advanced nonlinear studies |
container_volume | 2 |
creator | De Nápoli, Pablo L. Mariani, M. Cristina |
description | This work is devoted to study the existence of solutions to equations of the p Laplacian type in unbounded domains. We prove the existence of at least one solution, and under further assumptions, the existence of infinitely many solutions. We apply the mountain pass theorem in weighted Sobolev spaces. |
doi_str_mv | 10.1515/ans-2002-0302 |
format | Article |
fullrecord | <record><control><sourceid>walterdegruyter_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1515_ans_2002_0302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1515_ans_2002_030223237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-5dde2d6c0a5c1d5cce65e53c03a9d5185a1d76a9b0ceefee8ca9cdbf468106e13</originalsourceid><addsrcrecordid>eNptj0tPwzAQhC0EElHpkXv-gMGPrptwQ6U8pEhc2rO1tTcoVeoEOxHqvydRObKXmcPMaD_G7qV4kCDhEUPiSgjFhRbqimVKmnLya7hmmQRtuNQGbtkypaOYblWqFUDG1PZ7xKHpQsq7Ou95hX2LrsGQ78495U3I9-HQjcGTz1-6EzYh3bGbGttEyz9dsP3rdrd559Xn28fmueJOFcXAwXtS3jiB4KQH58gAgXZCY-lBFoDSrw2WB-GIaqLCYen8oV6ZQgpDUi8Yv-y62KUUqbZ9bE4Yz1YKOzPbidnOzHZmnvJPl_wPtgNFT19xPE_GHrsxhunT_3tKK73Wv6ydXVI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Equations of p-Laplacian Type in Unbounded Domains</title><source>Alma/SFX Local Collection</source><source>Walter De Gruyter: Open Access Journals</source><creator>De Nápoli, Pablo L. ; Mariani, M. Cristina</creator><creatorcontrib>De Nápoli, Pablo L. ; Mariani, M. Cristina</creatorcontrib><description>This work is devoted to study the existence of solutions to equations of the p Laplacian type in unbounded domains. We prove the existence of at least one solution, and under further assumptions, the existence of infinitely many solutions. We apply the mountain pass theorem in weighted Sobolev spaces.</description><identifier>ISSN: 1536-1365</identifier><identifier>EISSN: 2169-0375</identifier><identifier>DOI: 10.1515/ans-2002-0302</identifier><language>eng</language><publisher>Advanced Nonlinear Studies, Inc</publisher><subject>mountain pass lemma ; plaplacian ; weighted Sobolev spaces</subject><ispartof>Advanced nonlinear studies, 2002-08, Vol.2 (3), p.237-250</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-5dde2d6c0a5c1d5cce65e53c03a9d5185a1d76a9b0ceefee8ca9cdbf468106e13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/ans-2002-0302/pdf$$EPDF$$P50$$Gwalterdegruyter$$H</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/ans-2002-0302/html$$EHTML$$P50$$Gwalterdegruyter$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,66929,68713</link.rule.ids></links><search><creatorcontrib>De Nápoli, Pablo L.</creatorcontrib><creatorcontrib>Mariani, M. Cristina</creatorcontrib><title>Equations of p-Laplacian Type in Unbounded Domains</title><title>Advanced nonlinear studies</title><description>This work is devoted to study the existence of solutions to equations of the p Laplacian type in unbounded domains. We prove the existence of at least one solution, and under further assumptions, the existence of infinitely many solutions. We apply the mountain pass theorem in weighted Sobolev spaces.</description><subject>mountain pass lemma</subject><subject>plaplacian</subject><subject>weighted Sobolev spaces</subject><issn>1536-1365</issn><issn>2169-0375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNptj0tPwzAQhC0EElHpkXv-gMGPrptwQ6U8pEhc2rO1tTcoVeoEOxHqvydRObKXmcPMaD_G7qV4kCDhEUPiSgjFhRbqimVKmnLya7hmmQRtuNQGbtkypaOYblWqFUDG1PZ7xKHpQsq7Ou95hX2LrsGQ78495U3I9-HQjcGTz1-6EzYh3bGbGttEyz9dsP3rdrd559Xn28fmueJOFcXAwXtS3jiB4KQH58gAgXZCY-lBFoDSrw2WB-GIaqLCYen8oV6ZQgpDUi8Yv-y62KUUqbZ9bE4Yz1YKOzPbidnOzHZmnvJPl_wPtgNFT19xPE_GHrsxhunT_3tKK73Wv6ydXVI</recordid><startdate>20020801</startdate><enddate>20020801</enddate><creator>De Nápoli, Pablo L.</creator><creator>Mariani, M. Cristina</creator><general>Advanced Nonlinear Studies, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20020801</creationdate><title>Equations of p-Laplacian Type in Unbounded Domains</title><author>De Nápoli, Pablo L. ; Mariani, M. Cristina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-5dde2d6c0a5c1d5cce65e53c03a9d5185a1d76a9b0ceefee8ca9cdbf468106e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>mountain pass lemma</topic><topic>plaplacian</topic><topic>weighted Sobolev spaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Nápoli, Pablo L.</creatorcontrib><creatorcontrib>Mariani, M. Cristina</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced nonlinear studies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Nápoli, Pablo L.</au><au>Mariani, M. Cristina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equations of p-Laplacian Type in Unbounded Domains</atitle><jtitle>Advanced nonlinear studies</jtitle><date>2002-08-01</date><risdate>2002</risdate><volume>2</volume><issue>3</issue><spage>237</spage><epage>250</epage><pages>237-250</pages><issn>1536-1365</issn><eissn>2169-0375</eissn><abstract>This work is devoted to study the existence of solutions to equations of the p Laplacian type in unbounded domains. We prove the existence of at least one solution, and under further assumptions, the existence of infinitely many solutions. We apply the mountain pass theorem in weighted Sobolev spaces.</abstract><pub>Advanced Nonlinear Studies, Inc</pub><doi>10.1515/ans-2002-0302</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1536-1365 |
ispartof | Advanced nonlinear studies, 2002-08, Vol.2 (3), p.237-250 |
issn | 1536-1365 2169-0375 |
language | eng |
recordid | cdi_crossref_primary_10_1515_ans_2002_0302 |
source | Alma/SFX Local Collection; Walter De Gruyter: Open Access Journals |
subjects | mountain pass lemma plaplacian weighted Sobolev spaces |
title | Equations of p-Laplacian Type in Unbounded Domains |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T14%3A43%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-walterdegruyter_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equations%20of%20p-Laplacian%20Type%20in%20Unbounded%20Domains&rft.jtitle=Advanced%20nonlinear%20studies&rft.au=De%20N%C3%A1poli,%20Pablo%20L.&rft.date=2002-08-01&rft.volume=2&rft.issue=3&rft.spage=237&rft.epage=250&rft.pages=237-250&rft.issn=1536-1365&rft.eissn=2169-0375&rft_id=info:doi/10.1515/ans-2002-0302&rft_dat=%3Cwalterdegruyter_cross%3E10_1515_ans_2002_030223237%3C/walterdegruyter_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |