Equations of p-Laplacian Type in Unbounded Domains

This work is devoted to study the existence of solutions to equations of the p Laplacian type in unbounded domains. We prove the existence of at least one solution, and under further assumptions, the existence of infinitely many solutions. We apply the mountain pass theorem in weighted Sobolev space...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced nonlinear studies 2002-08, Vol.2 (3), p.237-250
Hauptverfasser: De Nápoli, Pablo L., Mariani, M. Cristina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 250
container_issue 3
container_start_page 237
container_title Advanced nonlinear studies
container_volume 2
creator De Nápoli, Pablo L.
Mariani, M. Cristina
description This work is devoted to study the existence of solutions to equations of the p Laplacian type in unbounded domains. We prove the existence of at least one solution, and under further assumptions, the existence of infinitely many solutions. We apply the mountain pass theorem in weighted Sobolev spaces.
doi_str_mv 10.1515/ans-2002-0302
format Article
fullrecord <record><control><sourceid>walterdegruyter_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1515_ans_2002_0302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1515_ans_2002_030223237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-5dde2d6c0a5c1d5cce65e53c03a9d5185a1d76a9b0ceefee8ca9cdbf468106e13</originalsourceid><addsrcrecordid>eNptj0tPwzAQhC0EElHpkXv-gMGPrptwQ6U8pEhc2rO1tTcoVeoEOxHqvydRObKXmcPMaD_G7qV4kCDhEUPiSgjFhRbqimVKmnLya7hmmQRtuNQGbtkypaOYblWqFUDG1PZ7xKHpQsq7Ou95hX2LrsGQ78495U3I9-HQjcGTz1-6EzYh3bGbGttEyz9dsP3rdrd559Xn28fmueJOFcXAwXtS3jiB4KQH58gAgXZCY-lBFoDSrw2WB-GIaqLCYen8oV6ZQgpDUi8Yv-y62KUUqbZ9bE4Yz1YKOzPbidnOzHZmnvJPl_wPtgNFT19xPE_GHrsxhunT_3tKK73Wv6ydXVI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Equations of p-Laplacian Type in Unbounded Domains</title><source>Alma/SFX Local Collection</source><source>Walter De Gruyter: Open Access Journals</source><creator>De Nápoli, Pablo L. ; Mariani, M. Cristina</creator><creatorcontrib>De Nápoli, Pablo L. ; Mariani, M. Cristina</creatorcontrib><description>This work is devoted to study the existence of solutions to equations of the p Laplacian type in unbounded domains. We prove the existence of at least one solution, and under further assumptions, the existence of infinitely many solutions. We apply the mountain pass theorem in weighted Sobolev spaces.</description><identifier>ISSN: 1536-1365</identifier><identifier>EISSN: 2169-0375</identifier><identifier>DOI: 10.1515/ans-2002-0302</identifier><language>eng</language><publisher>Advanced Nonlinear Studies, Inc</publisher><subject>mountain pass lemma ; plaplacian ; weighted Sobolev spaces</subject><ispartof>Advanced nonlinear studies, 2002-08, Vol.2 (3), p.237-250</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-5dde2d6c0a5c1d5cce65e53c03a9d5185a1d76a9b0ceefee8ca9cdbf468106e13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/ans-2002-0302/pdf$$EPDF$$P50$$Gwalterdegruyter$$H</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/ans-2002-0302/html$$EHTML$$P50$$Gwalterdegruyter$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,66929,68713</link.rule.ids></links><search><creatorcontrib>De Nápoli, Pablo L.</creatorcontrib><creatorcontrib>Mariani, M. Cristina</creatorcontrib><title>Equations of p-Laplacian Type in Unbounded Domains</title><title>Advanced nonlinear studies</title><description>This work is devoted to study the existence of solutions to equations of the p Laplacian type in unbounded domains. We prove the existence of at least one solution, and under further assumptions, the existence of infinitely many solutions. We apply the mountain pass theorem in weighted Sobolev spaces.</description><subject>mountain pass lemma</subject><subject>plaplacian</subject><subject>weighted Sobolev spaces</subject><issn>1536-1365</issn><issn>2169-0375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNptj0tPwzAQhC0EElHpkXv-gMGPrptwQ6U8pEhc2rO1tTcoVeoEOxHqvydRObKXmcPMaD_G7qV4kCDhEUPiSgjFhRbqimVKmnLya7hmmQRtuNQGbtkypaOYblWqFUDG1PZ7xKHpQsq7Ou95hX2LrsGQ78495U3I9-HQjcGTz1-6EzYh3bGbGttEyz9dsP3rdrd559Xn28fmueJOFcXAwXtS3jiB4KQH58gAgXZCY-lBFoDSrw2WB-GIaqLCYen8oV6ZQgpDUi8Yv-y62KUUqbZ9bE4Yz1YKOzPbidnOzHZmnvJPl_wPtgNFT19xPE_GHrsxhunT_3tKK73Wv6ydXVI</recordid><startdate>20020801</startdate><enddate>20020801</enddate><creator>De Nápoli, Pablo L.</creator><creator>Mariani, M. Cristina</creator><general>Advanced Nonlinear Studies, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20020801</creationdate><title>Equations of p-Laplacian Type in Unbounded Domains</title><author>De Nápoli, Pablo L. ; Mariani, M. Cristina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-5dde2d6c0a5c1d5cce65e53c03a9d5185a1d76a9b0ceefee8ca9cdbf468106e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>mountain pass lemma</topic><topic>plaplacian</topic><topic>weighted Sobolev spaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Nápoli, Pablo L.</creatorcontrib><creatorcontrib>Mariani, M. Cristina</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced nonlinear studies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Nápoli, Pablo L.</au><au>Mariani, M. Cristina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equations of p-Laplacian Type in Unbounded Domains</atitle><jtitle>Advanced nonlinear studies</jtitle><date>2002-08-01</date><risdate>2002</risdate><volume>2</volume><issue>3</issue><spage>237</spage><epage>250</epage><pages>237-250</pages><issn>1536-1365</issn><eissn>2169-0375</eissn><abstract>This work is devoted to study the existence of solutions to equations of the p Laplacian type in unbounded domains. We prove the existence of at least one solution, and under further assumptions, the existence of infinitely many solutions. We apply the mountain pass theorem in weighted Sobolev spaces.</abstract><pub>Advanced Nonlinear Studies, Inc</pub><doi>10.1515/ans-2002-0302</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1536-1365
ispartof Advanced nonlinear studies, 2002-08, Vol.2 (3), p.237-250
issn 1536-1365
2169-0375
language eng
recordid cdi_crossref_primary_10_1515_ans_2002_0302
source Alma/SFX Local Collection; Walter De Gruyter: Open Access Journals
subjects mountain pass lemma
plaplacian
weighted Sobolev spaces
title Equations of p-Laplacian Type in Unbounded Domains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T14%3A43%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-walterdegruyter_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equations%20of%20p-Laplacian%20Type%20in%20Unbounded%20Domains&rft.jtitle=Advanced%20nonlinear%20studies&rft.au=De%20N%C3%A1poli,%20Pablo%20L.&rft.date=2002-08-01&rft.volume=2&rft.issue=3&rft.spage=237&rft.epage=250&rft.pages=237-250&rft.issn=1536-1365&rft.eissn=2169-0375&rft_id=info:doi/10.1515/ans-2002-0302&rft_dat=%3Cwalterdegruyter_cross%3E10_1515_ans_2002_030223237%3C/walterdegruyter_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true