Existence of spin structures on flat four-manifolds
We prove that all but 3 of the 27 closed, orientable, flat, four-dimensional manifolds have a spin structure.
Gespeichert in:
Veröffentlicht in: | Advances in geometry 2010-04, Vol.10 (2), p.323-332 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 332 |
---|---|
container_issue | 2 |
container_start_page | 323 |
container_title | Advances in geometry |
container_volume | 10 |
creator | Putrycz, Bartosz Szczepański, Andrzej |
description | We prove that all but 3 of the 27 closed, orientable, flat, four-dimensional manifolds have a spin structure. |
doi_str_mv | 10.1515/advgeom.2010.013 |
format | Article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1515_advgeom_2010_013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_QT4_3DRLJ6V2_C</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-4d9e232186d55ddec7a6503a036ac99e690abf8aba656ce5191c9b9d4f46441d3</originalsourceid><addsrcrecordid>eNo9z9tKxDAQBuAgCq6r917mBbpmmkObS6nriYIoq3gX0hyk2sOStLK-vS277NUMP_MPfAhdA1kBB36j7e-X69tVSqaEAD1BCxDAkwxEfnrc-ec5uojxmxDgJKULRNe7Og6uMw73Hsdt3eE4hNEMY3AR9x32jR6w78eQtLqrfd_YeInOvG6iuzrMJXq_X2-Kx6R8eXgqbsvEpDkMCbPSpTSFXFjOrXUm04ITqgkV2kjphCS68rmuplgYx0GCkZW0zDPBGFi6RGT_14Q-xuC82oa61eFPAVEzWh3QakarCT1Vkn1lRu2O9zr8KJHRjKvXDVP07q18Fh-pKug_rFdbdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Existence of spin structures on flat four-manifolds</title><source>De Gruyter journals</source><creator>Putrycz, Bartosz ; Szczepański, Andrzej</creator><creatorcontrib>Putrycz, Bartosz ; Szczepański, Andrzej</creatorcontrib><description>We prove that all but 3 of the 27 closed, orientable, flat, four-dimensional manifolds have a spin structure.</description><identifier>ISSN: 1615-715X</identifier><identifier>EISSN: 1615-7168</identifier><identifier>DOI: 10.1515/advgeom.2010.013</identifier><language>eng</language><publisher>Walter de Gruyter GmbH & Co. KG</publisher><subject>Bieberbach group ; flat manifold ; Spin structure</subject><ispartof>Advances in geometry, 2010-04, Vol.10 (2), p.323-332</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-4d9e232186d55ddec7a6503a036ac99e690abf8aba656ce5191c9b9d4f46441d3</citedby><cites>FETCH-LOGICAL-c281t-4d9e232186d55ddec7a6503a036ac99e690abf8aba656ce5191c9b9d4f46441d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Putrycz, Bartosz</creatorcontrib><creatorcontrib>Szczepański, Andrzej</creatorcontrib><title>Existence of spin structures on flat four-manifolds</title><title>Advances in geometry</title><addtitle>Advances in Geometry</addtitle><description>We prove that all but 3 of the 27 closed, orientable, flat, four-dimensional manifolds have a spin structure.</description><subject>Bieberbach group</subject><subject>flat manifold</subject><subject>Spin structure</subject><issn>1615-715X</issn><issn>1615-7168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNo9z9tKxDAQBuAgCq6r917mBbpmmkObS6nriYIoq3gX0hyk2sOStLK-vS277NUMP_MPfAhdA1kBB36j7e-X69tVSqaEAD1BCxDAkwxEfnrc-ec5uojxmxDgJKULRNe7Og6uMw73Hsdt3eE4hNEMY3AR9x32jR6w78eQtLqrfd_YeInOvG6iuzrMJXq_X2-Kx6R8eXgqbsvEpDkMCbPSpTSFXFjOrXUm04ITqgkV2kjphCS68rmuplgYx0GCkZW0zDPBGFi6RGT_14Q-xuC82oa61eFPAVEzWh3QakarCT1Vkn1lRu2O9zr8KJHRjKvXDVP07q18Fh-pKug_rFdbdw</recordid><startdate>201004</startdate><enddate>201004</enddate><creator>Putrycz, Bartosz</creator><creator>Szczepański, Andrzej</creator><general>Walter de Gruyter GmbH & Co. KG</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201004</creationdate><title>Existence of spin structures on flat four-manifolds</title><author>Putrycz, Bartosz ; Szczepański, Andrzej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-4d9e232186d55ddec7a6503a036ac99e690abf8aba656ce5191c9b9d4f46441d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bieberbach group</topic><topic>flat manifold</topic><topic>Spin structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Putrycz, Bartosz</creatorcontrib><creatorcontrib>Szczepański, Andrzej</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Advances in geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Putrycz, Bartosz</au><au>Szczepański, Andrzej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence of spin structures on flat four-manifolds</atitle><jtitle>Advances in geometry</jtitle><addtitle>Advances in Geometry</addtitle><date>2010-04</date><risdate>2010</risdate><volume>10</volume><issue>2</issue><spage>323</spage><epage>332</epage><pages>323-332</pages><issn>1615-715X</issn><eissn>1615-7168</eissn><abstract>We prove that all but 3 of the 27 closed, orientable, flat, four-dimensional manifolds have a spin structure.</abstract><pub>Walter de Gruyter GmbH & Co. KG</pub><doi>10.1515/advgeom.2010.013</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-715X |
ispartof | Advances in geometry, 2010-04, Vol.10 (2), p.323-332 |
issn | 1615-715X 1615-7168 |
language | eng |
recordid | cdi_crossref_primary_10_1515_advgeom_2010_013 |
source | De Gruyter journals |
subjects | Bieberbach group flat manifold Spin structure |
title | Existence of spin structures on flat four-manifolds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T01%3A48%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20of%20spin%20structures%20on%20flat%20four-manifolds&rft.jtitle=Advances%20in%20geometry&rft.au=Putrycz,%20Bartosz&rft.date=2010-04&rft.volume=10&rft.issue=2&rft.spage=323&rft.epage=332&rft.pages=323-332&rft.issn=1615-715X&rft.eissn=1615-7168&rft_id=info:doi/10.1515/advgeom.2010.013&rft_dat=%3Cistex_cross%3Eark_67375_QT4_3DRLJ6V2_C%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |