The macroscopic non-equilibrium kinetic energies of a small fluid particle

An analytical formula for the macroscopic kinetic energy per unit mass of a small macroscopic fluid particle is derived. The macroscopic kinetic energy per unit mass is presented as a sum of the macroscopic translational kinetic energy per unit mass and three Galilean invariants: the classical macro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of non-equilibrium thermodynamics 2004-01, Vol.29 (2), p.107-123
1. Verfasser: Simonenko, Sergey V.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 123
container_issue 2
container_start_page 107
container_title Journal of non-equilibrium thermodynamics
container_volume 29
creator Simonenko, Sergey V.
description An analytical formula for the macroscopic kinetic energy per unit mass of a small macroscopic fluid particle is derived. The macroscopic kinetic energy per unit mass is presented as a sum of the macroscopic translational kinetic energy per unit mass and three Galilean invariants: the classical macroscopic internal rotational kinetic energy per unit mass, a new macroscopic internal shear kinetic energy per unit mass and a new macroscopic internal kinetic energy of a shear-rotational coupling per unit mass with a small correction. The obtained formula generalizes the classical de Groot and Mazur expression by taking into account the shear component of the velocity field. The evolution equation for the average macroscopic internal kinetic energy per unit mass is derived within the frame of the model of an incompressible homogeneous viscous Newtonian fluid for the statistical ensemble of randomly and isotropically oriented and sheared small-scale turbulent eddies. The practical significance of the macroscopic internal shear kinetic energy is evaluated by the realistic prediction of the theoretical “shear-rotational” transition energy dissipation rate per unit mass for the transition of grid-generated stratified turbulence to internal gravity waves.
doi_str_mv 10.1515/JNETDY.2004.007
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1515_JNETDY_2004_007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_QT4_DK4CBJ6R_7</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-586cfe781e910638d91eac5ac995df22f77d2cc141c1c04d548c21e1bdae7a5b3</originalsourceid><addsrcrecordid>eNo9jz1PwzAYhD2ARCnMrP4DaV87dpyM0BZKqUCgMDBZrvMaTPNR7FaCf0-qIKaTTnenewi5YjBhksnp6nFRzt8mHEBMANQJGUEqIAEO4oycx_gJADIr1Iisyg-kjbGhi7bbeUvbrk3w6-Brvwn-0NCtb3Hf-9hiePcYaeeoobExdU1dffAV3ZnQB2q8IKfO1BEv_3RMXm8X5WyZrJ_u7mfX68RypfaJzDPrUOUMCwZZmlcFQ2OlsUUhK8e5U6ri1jLBLLMgKilyyxmyTWVQGblJx2Q67B5Px4BO74JvTPjRDPQRXw_4-oive_y-kQwNH_f4_R83YaszlSqpn0uh5w9idrPKXrRKfwFAW2AY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The macroscopic non-equilibrium kinetic energies of a small fluid particle</title><source>De Gruyter journals</source><creator>Simonenko, Sergey V.</creator><creatorcontrib>Simonenko, Sergey V.</creatorcontrib><description>An analytical formula for the macroscopic kinetic energy per unit mass of a small macroscopic fluid particle is derived. The macroscopic kinetic energy per unit mass is presented as a sum of the macroscopic translational kinetic energy per unit mass and three Galilean invariants: the classical macroscopic internal rotational kinetic energy per unit mass, a new macroscopic internal shear kinetic energy per unit mass and a new macroscopic internal kinetic energy of a shear-rotational coupling per unit mass with a small correction. The obtained formula generalizes the classical de Groot and Mazur expression by taking into account the shear component of the velocity field. The evolution equation for the average macroscopic internal kinetic energy per unit mass is derived within the frame of the model of an incompressible homogeneous viscous Newtonian fluid for the statistical ensemble of randomly and isotropically oriented and sheared small-scale turbulent eddies. The practical significance of the macroscopic internal shear kinetic energy is evaluated by the realistic prediction of the theoretical “shear-rotational” transition energy dissipation rate per unit mass for the transition of grid-generated stratified turbulence to internal gravity waves.</description><identifier>ISSN: 0340-0204</identifier><identifier>DOI: 10.1515/JNETDY.2004.007</identifier><language>eng</language><publisher>Walter de Gruyter</publisher><ispartof>Journal of non-equilibrium thermodynamics, 2004-01, Vol.29 (2), p.107-123</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-586cfe781e910638d91eac5ac995df22f77d2cc141c1c04d548c21e1bdae7a5b3</citedby><cites>FETCH-LOGICAL-c277t-586cfe781e910638d91eac5ac995df22f77d2cc141c1c04d548c21e1bdae7a5b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids></links><search><creatorcontrib>Simonenko, Sergey V.</creatorcontrib><title>The macroscopic non-equilibrium kinetic energies of a small fluid particle</title><title>Journal of non-equilibrium thermodynamics</title><addtitle>Journal of Non-Equilibrium Thermodynamics</addtitle><description>An analytical formula for the macroscopic kinetic energy per unit mass of a small macroscopic fluid particle is derived. The macroscopic kinetic energy per unit mass is presented as a sum of the macroscopic translational kinetic energy per unit mass and three Galilean invariants: the classical macroscopic internal rotational kinetic energy per unit mass, a new macroscopic internal shear kinetic energy per unit mass and a new macroscopic internal kinetic energy of a shear-rotational coupling per unit mass with a small correction. The obtained formula generalizes the classical de Groot and Mazur expression by taking into account the shear component of the velocity field. The evolution equation for the average macroscopic internal kinetic energy per unit mass is derived within the frame of the model of an incompressible homogeneous viscous Newtonian fluid for the statistical ensemble of randomly and isotropically oriented and sheared small-scale turbulent eddies. The practical significance of the macroscopic internal shear kinetic energy is evaluated by the realistic prediction of the theoretical “shear-rotational” transition energy dissipation rate per unit mass for the transition of grid-generated stratified turbulence to internal gravity waves.</description><issn>0340-0204</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNo9jz1PwzAYhD2ARCnMrP4DaV87dpyM0BZKqUCgMDBZrvMaTPNR7FaCf0-qIKaTTnenewi5YjBhksnp6nFRzt8mHEBMANQJGUEqIAEO4oycx_gJADIr1Iisyg-kjbGhi7bbeUvbrk3w6-Brvwn-0NCtb3Hf-9hiePcYaeeoobExdU1dffAV3ZnQB2q8IKfO1BEv_3RMXm8X5WyZrJ_u7mfX68RypfaJzDPrUOUMCwZZmlcFQ2OlsUUhK8e5U6ri1jLBLLMgKilyyxmyTWVQGblJx2Q67B5Px4BO74JvTPjRDPQRXw_4-oive_y-kQwNH_f4_R83YaszlSqpn0uh5w9idrPKXrRKfwFAW2AY</recordid><startdate>20040101</startdate><enddate>20040101</enddate><creator>Simonenko, Sergey V.</creator><general>Walter de Gruyter</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20040101</creationdate><title>The macroscopic non-equilibrium kinetic energies of a small fluid particle</title><author>Simonenko, Sergey V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-586cfe781e910638d91eac5ac995df22f77d2cc141c1c04d548c21e1bdae7a5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simonenko, Sergey V.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Journal of non-equilibrium thermodynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simonenko, Sergey V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The macroscopic non-equilibrium kinetic energies of a small fluid particle</atitle><jtitle>Journal of non-equilibrium thermodynamics</jtitle><addtitle>Journal of Non-Equilibrium Thermodynamics</addtitle><date>2004-01-01</date><risdate>2004</risdate><volume>29</volume><issue>2</issue><spage>107</spage><epage>123</epage><pages>107-123</pages><issn>0340-0204</issn><abstract>An analytical formula for the macroscopic kinetic energy per unit mass of a small macroscopic fluid particle is derived. The macroscopic kinetic energy per unit mass is presented as a sum of the macroscopic translational kinetic energy per unit mass and three Galilean invariants: the classical macroscopic internal rotational kinetic energy per unit mass, a new macroscopic internal shear kinetic energy per unit mass and a new macroscopic internal kinetic energy of a shear-rotational coupling per unit mass with a small correction. The obtained formula generalizes the classical de Groot and Mazur expression by taking into account the shear component of the velocity field. The evolution equation for the average macroscopic internal kinetic energy per unit mass is derived within the frame of the model of an incompressible homogeneous viscous Newtonian fluid for the statistical ensemble of randomly and isotropically oriented and sheared small-scale turbulent eddies. The practical significance of the macroscopic internal shear kinetic energy is evaluated by the realistic prediction of the theoretical “shear-rotational” transition energy dissipation rate per unit mass for the transition of grid-generated stratified turbulence to internal gravity waves.</abstract><pub>Walter de Gruyter</pub><doi>10.1515/JNETDY.2004.007</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0340-0204
ispartof Journal of non-equilibrium thermodynamics, 2004-01, Vol.29 (2), p.107-123
issn 0340-0204
language eng
recordid cdi_crossref_primary_10_1515_JNETDY_2004_007
source De Gruyter journals
title The macroscopic non-equilibrium kinetic energies of a small fluid particle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T09%3A45%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20macroscopic%20non-equilibrium%20kinetic%20energies%20of%20a%20small%20fluid%20particle&rft.jtitle=Journal%20of%20non-equilibrium%20thermodynamics&rft.au=Simonenko,%20Sergey%20V.&rft.date=2004-01-01&rft.volume=29&rft.issue=2&rft.spage=107&rft.epage=123&rft.pages=107-123&rft.issn=0340-0204&rft_id=info:doi/10.1515/JNETDY.2004.007&rft_dat=%3Cistex_cross%3Eark_67375_QT4_DK4CBJ6R_7%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true