Factoriality in Riesz groups
Throughout let G = (G,+,≤, 0) denote a Riesz group, where + is not necessarily a commutative operation. Call x ∈ G homogeneous if x > 0 and for all h, k ∈ (0, x] there is t ∈ (0, x] such that t ≤ h, k. In this paper we develop a theory of factoriality in Riesz groups based on the fact that if x ≤...
Gespeichert in:
Veröffentlicht in: | Journal of group theory 2008-01, Vol.11 (1), p.23-41 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 41 |
---|---|
container_issue | 1 |
container_start_page | 23 |
container_title | Journal of group theory |
container_volume | 11 |
creator | Mott, Joe L Rashid, Muneer A Zafrullah, Muhammad |
description | Throughout let G = (G,+,≤, 0) denote a Riesz group, where + is not necessarily a commutative operation. Call x ∈ G homogeneous if x > 0 and for all h, k ∈ (0, x] there is t ∈ (0, x] such that t ≤ h, k. In this paper we develop a theory of factoriality in Riesz groups based on the fact that if x ≤ G and x is a finite sum of homogeneous elements then x is uniquely expressible as a sum of finitely many mutually disjoint homogeneous elements. We then compare our work with existing results in lattice-ordered groups and in (commutative) integral domains. |
doi_str_mv | 10.1515/JGT.2008.002 |
format | Article |
fullrecord | <record><control><sourceid>walterdegruyter_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1515_JGT_2008_002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1515_JGT_2008_00211123</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-7c71a78fc7f735055571d199a5ccc2853e228f5dea7b35550ae4edc1ee868c893</originalsourceid><addsrcrecordid>eNptj8FOwzAQRC0EEqVw48ghH0CC1xvHzhFVtAWKECiIo2Ucp0opTWUnKuHrcQnixGlH2pndeYScA02AA7-6mxUJo1QmlLIDMoIUeZymaXb4ozHmUuIxOfF-RYOLZvmIXEy1aRtX63Xd9lG9iZ5r67-ipWu6rT8lR5Vee3v2O8fkZXpTTObx4nF2O7lexAYZtrEwArSQlRGVQE455wJKyHPNjTFMcrSMyYqXVos3DFuqbWpLA9bKTBqZ45hcDneNa7x3tlJbV39o1yugak-mApnak6lAFuz5YN_pdWtdaZeu64NQq6Zzm1D03xgAMAzZeMjWvrWff3-0e1eZQMHVU5EqmN-LB4lMveI3_gNg3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Factoriality in Riesz groups</title><source>De Gruyter journals</source><creator>Mott, Joe L ; Rashid, Muneer A ; Zafrullah, Muhammad</creator><creatorcontrib>Mott, Joe L ; Rashid, Muneer A ; Zafrullah, Muhammad</creatorcontrib><description>Throughout let G = (G,+,≤, 0) denote a Riesz group, where + is not necessarily a commutative operation. Call x ∈ G homogeneous if x > 0 and for all h, k ∈ (0, x] there is t ∈ (0, x] such that t ≤ h, k. In this paper we develop a theory of factoriality in Riesz groups based on the fact that if x ≤ G and x is a finite sum of homogeneous elements then x is uniquely expressible as a sum of finitely many mutually disjoint homogeneous elements. We then compare our work with existing results in lattice-ordered groups and in (commutative) integral domains.</description><identifier>ISSN: 1433-5883</identifier><identifier>EISSN: 1435-4446</identifier><identifier>DOI: 10.1515/JGT.2008.002</identifier><language>eng</language><publisher>Walter de Gruyter</publisher><ispartof>Journal of group theory, 2008-01, Vol.11 (1), p.23-41</ispartof><rights>Walter de Gruyter</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-7c71a78fc7f735055571d199a5ccc2853e228f5dea7b35550ae4edc1ee868c893</citedby><cites>FETCH-LOGICAL-c323t-7c71a78fc7f735055571d199a5ccc2853e228f5dea7b35550ae4edc1ee868c893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/JGT.2008.002/pdf$$EPDF$$P50$$Gwalterdegruyter$$H</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/JGT.2008.002/html$$EHTML$$P50$$Gwalterdegruyter$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,66497,68281</link.rule.ids></links><search><creatorcontrib>Mott, Joe L</creatorcontrib><creatorcontrib>Rashid, Muneer A</creatorcontrib><creatorcontrib>Zafrullah, Muhammad</creatorcontrib><title>Factoriality in Riesz groups</title><title>Journal of group theory</title><addtitle>Journal of Group Theory</addtitle><description>Throughout let G = (G,+,≤, 0) denote a Riesz group, where + is not necessarily a commutative operation. Call x ∈ G homogeneous if x > 0 and for all h, k ∈ (0, x] there is t ∈ (0, x] such that t ≤ h, k. In this paper we develop a theory of factoriality in Riesz groups based on the fact that if x ≤ G and x is a finite sum of homogeneous elements then x is uniquely expressible as a sum of finitely many mutually disjoint homogeneous elements. We then compare our work with existing results in lattice-ordered groups and in (commutative) integral domains.</description><issn>1433-5883</issn><issn>1435-4446</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNptj8FOwzAQRC0EEqVw48ghH0CC1xvHzhFVtAWKECiIo2Ucp0opTWUnKuHrcQnixGlH2pndeYScA02AA7-6mxUJo1QmlLIDMoIUeZymaXb4ozHmUuIxOfF-RYOLZvmIXEy1aRtX63Xd9lG9iZ5r67-ipWu6rT8lR5Vee3v2O8fkZXpTTObx4nF2O7lexAYZtrEwArSQlRGVQE455wJKyHPNjTFMcrSMyYqXVos3DFuqbWpLA9bKTBqZ45hcDneNa7x3tlJbV39o1yugak-mApnak6lAFuz5YN_pdWtdaZeu64NQq6Zzm1D03xgAMAzZeMjWvrWff3-0e1eZQMHVU5EqmN-LB4lMveI3_gNg3A</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Mott, Joe L</creator><creator>Rashid, Muneer A</creator><creator>Zafrullah, Muhammad</creator><general>Walter de Gruyter</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20080101</creationdate><title>Factoriality in Riesz groups</title><author>Mott, Joe L ; Rashid, Muneer A ; Zafrullah, Muhammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-7c71a78fc7f735055571d199a5ccc2853e228f5dea7b35550ae4edc1ee868c893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mott, Joe L</creatorcontrib><creatorcontrib>Rashid, Muneer A</creatorcontrib><creatorcontrib>Zafrullah, Muhammad</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Journal of group theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mott, Joe L</au><au>Rashid, Muneer A</au><au>Zafrullah, Muhammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Factoriality in Riesz groups</atitle><jtitle>Journal of group theory</jtitle><addtitle>Journal of Group Theory</addtitle><date>2008-01-01</date><risdate>2008</risdate><volume>11</volume><issue>1</issue><spage>23</spage><epage>41</epage><pages>23-41</pages><issn>1433-5883</issn><eissn>1435-4446</eissn><abstract>Throughout let G = (G,+,≤, 0) denote a Riesz group, where + is not necessarily a commutative operation. Call x ∈ G homogeneous if x > 0 and for all h, k ∈ (0, x] there is t ∈ (0, x] such that t ≤ h, k. In this paper we develop a theory of factoriality in Riesz groups based on the fact that if x ≤ G and x is a finite sum of homogeneous elements then x is uniquely expressible as a sum of finitely many mutually disjoint homogeneous elements. We then compare our work with existing results in lattice-ordered groups and in (commutative) integral domains.</abstract><pub>Walter de Gruyter</pub><doi>10.1515/JGT.2008.002</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-5883 |
ispartof | Journal of group theory, 2008-01, Vol.11 (1), p.23-41 |
issn | 1433-5883 1435-4446 |
language | eng |
recordid | cdi_crossref_primary_10_1515_JGT_2008_002 |
source | De Gruyter journals |
title | Factoriality in Riesz groups |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T06%3A46%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-walterdegruyter_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Factoriality%20in%20Riesz%20groups&rft.jtitle=Journal%20of%20group%20theory&rft.au=Mott,%20Joe%20L&rft.date=2008-01-01&rft.volume=11&rft.issue=1&rft.spage=23&rft.epage=41&rft.pages=23-41&rft.issn=1433-5883&rft.eissn=1435-4446&rft_id=info:doi/10.1515/JGT.2008.002&rft_dat=%3Cwalterdegruyter_cross%3E10_1515_JGT_2008_00211123%3C/walterdegruyter_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |