On a Characterisation of Inner Product Spaces

It is well known that for the Hilbert space H the minimum value of the functional F μ (f) = ∫ H ‖f – g‖2 dμ(g), f ∈ H, is achived at the mean of μ for any probability measure μ with strong second moment on H. We show that the validity of this property for measures on a normed space having support at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Georgian mathematical journal 2001-06, Vol.8 (2), p.231-236
1. Verfasser: Chelidze, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is well known that for the Hilbert space H the minimum value of the functional F μ (f) = ∫ H ‖f – g‖2 dμ(g), f ∈ H, is achived at the mean of μ for any probability measure μ with strong second moment on H. We show that the validity of this property for measures on a normed space having support at three points with norm 1 and arbitrarily fixed positive weights implies the existence of an inner product that generates the norm.
ISSN:1072-947X
1072-9176
1572-9176
DOI:10.1515/GMJ.2001.231