On a Characterisation of Inner Product Spaces
It is well known that for the Hilbert space H the minimum value of the functional F μ (f) = ∫ H ‖f – g‖2 dμ(g), f ∈ H, is achived at the mean of μ for any probability measure μ with strong second moment on H. We show that the validity of this property for measures on a normed space having support at...
Gespeichert in:
Veröffentlicht in: | Georgian mathematical journal 2001-06, Vol.8 (2), p.231-236 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is well known that for the Hilbert space H the minimum value of the functional F μ (f) = ∫ H ‖f – g‖2 dμ(g), f ∈ H, is achived at the mean of μ for any probability measure μ with strong second moment on H. We show that the validity of this property for measures on a normed space having support at three points with norm 1 and arbitrarily fixed positive weights implies the existence of an inner product that generates the norm. |
---|---|
ISSN: | 1072-947X 1072-9176 1572-9176 |
DOI: | 10.1515/GMJ.2001.231 |