Solving Fermat-type equations via modular ℚ-curves over polyquadratic fields

We solve the diophantine equations x 4 + dy 2 = zp for d = 2 and d = 3 and any prime p > 349 and p > 131 respectively. The method consists in generalizing the ideas applied by Frey, Ribet and Wiles in the solution of Fermat's Last Theorem, and by Ellenberg in the solution of the equation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal für die reine und angewandte Mathematik 2009-08, Vol.2009 (633), p.183-195, Article 183
Hauptverfasser: Dieulefait, Luis, Urroz, Jorge Jiménez
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We solve the diophantine equations x 4 + dy 2 = zp for d = 2 and d = 3 and any prime p > 349 and p > 131 respectively. The method consists in generalizing the ideas applied by Frey, Ribet and Wiles in the solution of Fermat's Last Theorem, and by Ellenberg in the solution of the equation x 4 + y 2 = zp , and we use ℚ-curves, modular forms and inner twists. In principle our method can be applied to solve this type of equations for other values of d.
ISSN:0075-4102
1435-5345
DOI:10.1515/CRELLE.2009.064