Solving Fermat-type equations via modular ℚ-curves over polyquadratic fields
We solve the diophantine equations x 4 + dy 2 = zp for d = 2 and d = 3 and any prime p > 349 and p > 131 respectively. The method consists in generalizing the ideas applied by Frey, Ribet and Wiles in the solution of Fermat's Last Theorem, and by Ellenberg in the solution of the equation...
Gespeichert in:
Veröffentlicht in: | Journal für die reine und angewandte Mathematik 2009-08, Vol.2009 (633), p.183-195, Article 183 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We solve the diophantine equations x 4 + dy 2 = zp for d = 2 and d = 3 and any prime p > 349 and p > 131 respectively. The method consists in generalizing the ideas applied by Frey, Ribet and Wiles in the solution of Fermat's Last Theorem, and by Ellenberg in the solution of the equation x 4 + y 2 = zp , and we use ℚ-curves, modular forms and inner twists. In principle our method can be applied to solve this type of equations for other values of d. |
---|---|
ISSN: | 0075-4102 1435-5345 |
DOI: | 10.1515/CRELLE.2009.064 |