Solution to the inverse problem for upper asymptotic density

Inverse problems study the structure of a set A when the “size” of A + A is small. In the article, the structure of an infinite set A of natural numbers with positive upper asymptotic density is characterized when A is not a subset of an infinite arithmetic progression of difference greater than one...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal für die reine und angewandte Mathematik 2006-06, Vol.2006 (595), p.121-165, Article 121
1. Verfasser: Jin, Renling
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 165
container_issue 595
container_start_page 121
container_title Journal für die reine und angewandte Mathematik
container_volume 2006
creator Jin, Renling
description Inverse problems study the structure of a set A when the “size” of A + A is small. In the article, the structure of an infinite set A of natural numbers with positive upper asymptotic density is characterized when A is not a subset of an infinite arithmetic progression of difference greater than one and A + A has the least possible upper asymptotic density. For example, if the upper asymptotic density α of A is strictly between 0 and 1/2, the upper asymptotic density of A + A is equal to 3α/2, and A is not a subset of an infinite arithmetic progression of difference greater than one, then A is either a large subset of the union of two infinite arithmetic progressions with the same common difference k = 2/α or for every increasing sequence hn of positive integers such that the relative density of A in [0, hn ] approaches α, the set A ∩ [0, hn ] can be partitioned into two parts A ∩ [0, cn ] and A ∩ [bn , hn ], such that cn/hn approaches 0, i.e. the size of A ∩ [0, cn ] is asymptotically small compared with the size of [0, hn ], and (hn − bn )/hn approaches α, i.e. the size of A ∩ [bn , hn ] is asymptotically almost the same as the size of the interval [bn , hn ]. The results here answer a question of the author in [R. Jin, Inverse problem for upper asymptotic density, Trans. Amer. Math. Soc. 355 (2003), No. 1, 57–78.]
doi_str_mv 10.1515/CRELLE.2006.046
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1515_CRELLE_2006_046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_QT4_QXMPRN1G_L</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-f8d894cf519febddc730127d19f0ad0e516aaa6b24a275f755265c1d77ac6b433</originalsourceid><addsrcrecordid>eNp9z01LAzEQgOEgCtbq2Wv-wLb5mqQFL1JqFdaP1greQjabxei2WZJU7L-3peLBg6dhDu8MD0KXlAwoUBhOFtOynA4YIXJAhDxCPSo4FMAFHKMeIQoKQQk7RWcpvRNCgCrWQ1fPod1kH9Y4B5zfHPbrTxeTw10MVetWuAkRb7rORWzSdtXlkL3FtVsnn7fn6KQxbXIXP7OPXm6my8ltUT7O7ibXZWGZGueiGdWjsbAN0HHjqrq2ihPKVL1biamJAyqNMbJiwjAFjQJgEiytlTJWVoLzPhoe7toYUoqu0V30KxO3mhK9x-sDXu_xeoffFfCnsD6bvTNH49t_uuLQ-ZTd1-8bEz-0VFyBni-Fnr_ePy0e6EyX_BsjtW6S</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Solution to the inverse problem for upper asymptotic density</title><source>De Gruyter journals</source><creator>Jin, Renling</creator><creatorcontrib>Jin, Renling</creatorcontrib><description>Inverse problems study the structure of a set A when the “size” of A + A is small. In the article, the structure of an infinite set A of natural numbers with positive upper asymptotic density is characterized when A is not a subset of an infinite arithmetic progression of difference greater than one and A + A has the least possible upper asymptotic density. For example, if the upper asymptotic density α of A is strictly between 0 and 1/2, the upper asymptotic density of A + A is equal to 3α/2, and A is not a subset of an infinite arithmetic progression of difference greater than one, then A is either a large subset of the union of two infinite arithmetic progressions with the same common difference k = 2/α or for every increasing sequence hn of positive integers such that the relative density of A in [0, hn ] approaches α, the set A ∩ [0, hn ] can be partitioned into two parts A ∩ [0, cn ] and A ∩ [bn , hn ], such that cn/hn approaches 0, i.e. the size of A ∩ [0, cn ] is asymptotically small compared with the size of [0, hn ], and (hn − bn )/hn approaches α, i.e. the size of A ∩ [bn , hn ] is asymptotically almost the same as the size of the interval [bn , hn ]. The results here answer a question of the author in [R. Jin, Inverse problem for upper asymptotic density, Trans. Amer. Math. Soc. 355 (2003), No. 1, 57–78.]</description><identifier>ISSN: 0075-4102</identifier><identifier>EISSN: 1435-5345</identifier><identifier>DOI: 10.1515/CRELLE.2006.046</identifier><language>eng</language><publisher>Walter de Gruyter</publisher><ispartof>Journal für die reine und angewandte Mathematik, 2006-06, Vol.2006 (595), p.121-165, Article 121</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c279t-f8d894cf519febddc730127d19f0ad0e516aaa6b24a275f755265c1d77ac6b433</citedby><cites>FETCH-LOGICAL-c279t-f8d894cf519febddc730127d19f0ad0e516aaa6b24a275f755265c1d77ac6b433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><creatorcontrib>Jin, Renling</creatorcontrib><title>Solution to the inverse problem for upper asymptotic density</title><title>Journal für die reine und angewandte Mathematik</title><addtitle>Journal für die reine und angewandte Mathematik (Crelles Journal)</addtitle><description>Inverse problems study the structure of a set A when the “size” of A + A is small. In the article, the structure of an infinite set A of natural numbers with positive upper asymptotic density is characterized when A is not a subset of an infinite arithmetic progression of difference greater than one and A + A has the least possible upper asymptotic density. For example, if the upper asymptotic density α of A is strictly between 0 and 1/2, the upper asymptotic density of A + A is equal to 3α/2, and A is not a subset of an infinite arithmetic progression of difference greater than one, then A is either a large subset of the union of two infinite arithmetic progressions with the same common difference k = 2/α or for every increasing sequence hn of positive integers such that the relative density of A in [0, hn ] approaches α, the set A ∩ [0, hn ] can be partitioned into two parts A ∩ [0, cn ] and A ∩ [bn , hn ], such that cn/hn approaches 0, i.e. the size of A ∩ [0, cn ] is asymptotically small compared with the size of [0, hn ], and (hn − bn )/hn approaches α, i.e. the size of A ∩ [bn , hn ] is asymptotically almost the same as the size of the interval [bn , hn ]. The results here answer a question of the author in [R. Jin, Inverse problem for upper asymptotic density, Trans. Amer. Math. Soc. 355 (2003), No. 1, 57–78.]</description><issn>0075-4102</issn><issn>1435-5345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9z01LAzEQgOEgCtbq2Wv-wLb5mqQFL1JqFdaP1greQjabxei2WZJU7L-3peLBg6dhDu8MD0KXlAwoUBhOFtOynA4YIXJAhDxCPSo4FMAFHKMeIQoKQQk7RWcpvRNCgCrWQ1fPod1kH9Y4B5zfHPbrTxeTw10MVetWuAkRb7rORWzSdtXlkL3FtVsnn7fn6KQxbXIXP7OPXm6my8ltUT7O7ibXZWGZGueiGdWjsbAN0HHjqrq2ihPKVL1biamJAyqNMbJiwjAFjQJgEiytlTJWVoLzPhoe7toYUoqu0V30KxO3mhK9x-sDXu_xeoffFfCnsD6bvTNH49t_uuLQ-ZTd1-8bEz-0VFyBni-Fnr_ePy0e6EyX_BsjtW6S</recordid><startdate>20060601</startdate><enddate>20060601</enddate><creator>Jin, Renling</creator><general>Walter de Gruyter</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20060601</creationdate><title>Solution to the inverse problem for upper asymptotic density</title><author>Jin, Renling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-f8d894cf519febddc730127d19f0ad0e516aaa6b24a275f755265c1d77ac6b433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Renling</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Journal für die reine und angewandte Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Renling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solution to the inverse problem for upper asymptotic density</atitle><jtitle>Journal für die reine und angewandte Mathematik</jtitle><addtitle>Journal für die reine und angewandte Mathematik (Crelles Journal)</addtitle><date>2006-06-01</date><risdate>2006</risdate><volume>2006</volume><issue>595</issue><spage>121</spage><epage>165</epage><pages>121-165</pages><artnum>121</artnum><issn>0075-4102</issn><eissn>1435-5345</eissn><abstract>Inverse problems study the structure of a set A when the “size” of A + A is small. In the article, the structure of an infinite set A of natural numbers with positive upper asymptotic density is characterized when A is not a subset of an infinite arithmetic progression of difference greater than one and A + A has the least possible upper asymptotic density. For example, if the upper asymptotic density α of A is strictly between 0 and 1/2, the upper asymptotic density of A + A is equal to 3α/2, and A is not a subset of an infinite arithmetic progression of difference greater than one, then A is either a large subset of the union of two infinite arithmetic progressions with the same common difference k = 2/α or for every increasing sequence hn of positive integers such that the relative density of A in [0, hn ] approaches α, the set A ∩ [0, hn ] can be partitioned into two parts A ∩ [0, cn ] and A ∩ [bn , hn ], such that cn/hn approaches 0, i.e. the size of A ∩ [0, cn ] is asymptotically small compared with the size of [0, hn ], and (hn − bn )/hn approaches α, i.e. the size of A ∩ [bn , hn ] is asymptotically almost the same as the size of the interval [bn , hn ]. The results here answer a question of the author in [R. Jin, Inverse problem for upper asymptotic density, Trans. Amer. Math. Soc. 355 (2003), No. 1, 57–78.]</abstract><pub>Walter de Gruyter</pub><doi>10.1515/CRELLE.2006.046</doi><tpages>45</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0075-4102
ispartof Journal für die reine und angewandte Mathematik, 2006-06, Vol.2006 (595), p.121-165, Article 121
issn 0075-4102
1435-5345
language eng
recordid cdi_crossref_primary_10_1515_CRELLE_2006_046
source De Gruyter journals
title Solution to the inverse problem for upper asymptotic density
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T04%3A55%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solution%20to%20the%20inverse%20problem%20for%20upper%20asymptotic%20density&rft.jtitle=Journal%20f%C3%BCr%20die%20reine%20und%20angewandte%20Mathematik&rft.au=Jin,%20Renling&rft.date=2006-06-01&rft.volume=2006&rft.issue=595&rft.spage=121&rft.epage=165&rft.pages=121-165&rft.artnum=121&rft.issn=0075-4102&rft.eissn=1435-5345&rft_id=info:doi/10.1515/CRELLE.2006.046&rft_dat=%3Cistex_cross%3Eark_67375_QT4_QXMPRN1G_L%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true