First Stage Estimation of Fractional Cointegration

In a fractionally cointegrated model, we analyze, both theoretically and by means of a Monte Carlo experiment, the performance of the most popular first stage estimation methods, including ordinary and narrow band least squares (Robinson, 1994), difference taper narrow band least squares (Chen and H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of time series econometrics 2012-05, Vol.4 (1), p.1-30
Hauptverfasser: Hualde, Javier, Iacone, Fabrizio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 30
container_issue 1
container_start_page 1
container_title Journal of time series econometrics
container_volume 4
creator Hualde, Javier
Iacone, Fabrizio
description In a fractionally cointegrated model, we analyze, both theoretically and by means of a Monte Carlo experiment, the performance of the most popular first stage estimation methods, including ordinary and narrow band least squares (Robinson, 1994), difference taper narrow band least squares (Chen and Hurvich, 2003a), instrumental variables (Robinson and Gerolimetto, 2006), and compare it with the behavior of a new proposal, the integrated ordinary least squares. An appropriate version of this latter estimator (and also of the instrumental variables one) achieves in all circumstances the fastest convergence rate (among other first stage methods) and performs well in finite samples. The use of improved first stage methods is most important in cases of low collective memory of regressor and cointegrating error. This is particularly relevant in multivariate settings, where the key parameters which rule the convergence properties of the estimators are the memories of adjacent cointegrating subspaces.
doi_str_mv 10.1515/1941-1928.1129
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1515_1941_1928_1129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_QT4_0BS895XQ_B</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-5bfb299a4e7901d6c6dbc1e64cf51e6956a0c8dc4b28ff723dd98c0960e211b33</originalsourceid><addsrcrecordid>eNp1j0FLAzEQhYMoWKtXr-4f2JrJJtnkaEtbhYKUVvAWstmkbK1dSVK0_96sK8WLp3nMvPeYD6FbwCNgwO5BUshBEjECIPIMDU6L8z_6El2FsMWYM1GyASKzxoeYraLe2GwaYvOuY9Pus9ZlM69Np_Uum7TNPtqN_7ldowund8He_M4heplN15PHfPE8f5o8LHJTUBpzVrmKSKmpLSWGmhteVwYsp8axNCTjGhtRG1oR4VxJirqWwmDJsSUAVVEM0ajvNb4NwVunPnx6zx8VYNURqw5KdVCqI06Buz5gTbtvwsleEs4lF7JMDtE7PvUuWl8npMMxCbVtDz6Bhn-qKaRo3kebEO3XqVv7N8XLomRquaYKj1dCstelGhff2QxznA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>First Stage Estimation of Fractional Cointegration</title><source>De Gruyter journals</source><creator>Hualde, Javier ; Iacone, Fabrizio</creator><creatorcontrib>Hualde, Javier ; Iacone, Fabrizio</creatorcontrib><description>In a fractionally cointegrated model, we analyze, both theoretically and by means of a Monte Carlo experiment, the performance of the most popular first stage estimation methods, including ordinary and narrow band least squares (Robinson, 1994), difference taper narrow band least squares (Chen and Hurvich, 2003a), instrumental variables (Robinson and Gerolimetto, 2006), and compare it with the behavior of a new proposal, the integrated ordinary least squares. An appropriate version of this latter estimator (and also of the instrumental variables one) achieves in all circumstances the fastest convergence rate (among other first stage methods) and performs well in finite samples. The use of improved first stage methods is most important in cases of low collective memory of regressor and cointegrating error. This is particularly relevant in multivariate settings, where the key parameters which rule the convergence properties of the estimators are the memories of adjacent cointegrating subspaces.</description><identifier>ISSN: 1941-1928</identifier><identifier>EISSN: 1941-1928</identifier><identifier>DOI: 10.1515/1941-1928.1129</identifier><language>eng</language><publisher>De Gruyter</publisher><subject>first stage methods ; fractional cointegration ; multivariate models</subject><ispartof>Journal of time series econometrics, 2012-05, Vol.4 (1), p.1-30</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-5bfb299a4e7901d6c6dbc1e64cf51e6956a0c8dc4b28ff723dd98c0960e211b33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/1941-1928.1129/pdf$$EPDF$$P50$$Gwalterdegruyter$$H</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/1941-1928.1129/html$$EHTML$$P50$$Gwalterdegruyter$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,66497,68281</link.rule.ids></links><search><creatorcontrib>Hualde, Javier</creatorcontrib><creatorcontrib>Iacone, Fabrizio</creatorcontrib><title>First Stage Estimation of Fractional Cointegration</title><title>Journal of time series econometrics</title><description>In a fractionally cointegrated model, we analyze, both theoretically and by means of a Monte Carlo experiment, the performance of the most popular first stage estimation methods, including ordinary and narrow band least squares (Robinson, 1994), difference taper narrow band least squares (Chen and Hurvich, 2003a), instrumental variables (Robinson and Gerolimetto, 2006), and compare it with the behavior of a new proposal, the integrated ordinary least squares. An appropriate version of this latter estimator (and also of the instrumental variables one) achieves in all circumstances the fastest convergence rate (among other first stage methods) and performs well in finite samples. The use of improved first stage methods is most important in cases of low collective memory of regressor and cointegrating error. This is particularly relevant in multivariate settings, where the key parameters which rule the convergence properties of the estimators are the memories of adjacent cointegrating subspaces.</description><subject>first stage methods</subject><subject>fractional cointegration</subject><subject>multivariate models</subject><issn>1941-1928</issn><issn>1941-1928</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1j0FLAzEQhYMoWKtXr-4f2JrJJtnkaEtbhYKUVvAWstmkbK1dSVK0_96sK8WLp3nMvPeYD6FbwCNgwO5BUshBEjECIPIMDU6L8z_6El2FsMWYM1GyASKzxoeYraLe2GwaYvOuY9Pus9ZlM69Np_Uum7TNPtqN_7ldowund8He_M4heplN15PHfPE8f5o8LHJTUBpzVrmKSKmpLSWGmhteVwYsp8axNCTjGhtRG1oR4VxJirqWwmDJsSUAVVEM0ajvNb4NwVunPnx6zx8VYNURqw5KdVCqI06Buz5gTbtvwsleEs4lF7JMDtE7PvUuWl8npMMxCbVtDz6Bhn-qKaRo3kebEO3XqVv7N8XLomRquaYKj1dCstelGhff2QxznA</recordid><startdate>20120514</startdate><enddate>20120514</enddate><creator>Hualde, Javier</creator><creator>Iacone, Fabrizio</creator><general>De Gruyter</general><scope>BSCLL</scope><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120514</creationdate><title>First Stage Estimation of Fractional Cointegration</title><author>Hualde, Javier ; Iacone, Fabrizio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-5bfb299a4e7901d6c6dbc1e64cf51e6956a0c8dc4b28ff723dd98c0960e211b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>first stage methods</topic><topic>fractional cointegration</topic><topic>multivariate models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hualde, Javier</creatorcontrib><creatorcontrib>Iacone, Fabrizio</creatorcontrib><collection>Istex</collection><collection>ECONIS</collection><collection>CrossRef</collection><jtitle>Journal of time series econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hualde, Javier</au><au>Iacone, Fabrizio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First Stage Estimation of Fractional Cointegration</atitle><jtitle>Journal of time series econometrics</jtitle><date>2012-05-14</date><risdate>2012</risdate><volume>4</volume><issue>1</issue><spage>1</spage><epage>30</epage><pages>1-30</pages><issn>1941-1928</issn><eissn>1941-1928</eissn><abstract>In a fractionally cointegrated model, we analyze, both theoretically and by means of a Monte Carlo experiment, the performance of the most popular first stage estimation methods, including ordinary and narrow band least squares (Robinson, 1994), difference taper narrow band least squares (Chen and Hurvich, 2003a), instrumental variables (Robinson and Gerolimetto, 2006), and compare it with the behavior of a new proposal, the integrated ordinary least squares. An appropriate version of this latter estimator (and also of the instrumental variables one) achieves in all circumstances the fastest convergence rate (among other first stage methods) and performs well in finite samples. The use of improved first stage methods is most important in cases of low collective memory of regressor and cointegrating error. This is particularly relevant in multivariate settings, where the key parameters which rule the convergence properties of the estimators are the memories of adjacent cointegrating subspaces.</abstract><pub>De Gruyter</pub><doi>10.1515/1941-1928.1129</doi><tpages>32</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1941-1928
ispartof Journal of time series econometrics, 2012-05, Vol.4 (1), p.1-30
issn 1941-1928
1941-1928
language eng
recordid cdi_crossref_primary_10_1515_1941_1928_1129
source De Gruyter journals
subjects first stage methods
fractional cointegration
multivariate models
title First Stage Estimation of Fractional Cointegration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T05%3A35%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First%20Stage%20Estimation%20of%20Fractional%20Cointegration&rft.jtitle=Journal%20of%20time%20series%20econometrics&rft.au=Hualde,%20Javier&rft.date=2012-05-14&rft.volume=4&rft.issue=1&rft.spage=1&rft.epage=30&rft.pages=1-30&rft.issn=1941-1928&rft.eissn=1941-1928&rft_id=info:doi/10.1515/1941-1928.1129&rft_dat=%3Cistex_cross%3Eark_67375_QT4_0BS895XQ_B%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true