Some results of error evaluation for a non-Gaussian simulation method
In a first part of the paper a simulation method for a strictly stationary non-Gaussian process with given one-dimensional marginal distribution (or N-first statistical moments) and autocorrelation function is recalled. This method was already widely treated in the articles [14] and [13]. The object...
Gespeichert in:
Veröffentlicht in: | Monte Carlo methods and applications 2004-03, Vol.10 (1), p.51-68 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 68 |
---|---|
container_issue | 1 |
container_start_page | 51 |
container_title | Monte Carlo methods and applications |
container_volume | 10 |
creator | Akian, Jean-Luc Puig, Bénédicte |
description | In a first part of the paper a simulation method for a strictly stationary non-Gaussian process with given one-dimensional marginal distribution (or N-first statistical moments) and autocorrelation function is recalled. This method was already widely treated in the articles [14] and [13]. The objective of the present paper is twofold: first, to simplify this method - if by Mehler formula it is possible to find an autocorrelation function yielding the target autocorrelation function, and second, analyze the difference between the given autocorrelation function and the model one. |
doi_str_mv | 10.1515/156939604323091207 |
format | Article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1515_156939604323091207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_QT4_5CDD8RKQ_T</sourcerecordid><originalsourceid>FETCH-LOGICAL-c130T-fa9a03a3b6484d7953757f8023d63ffb652effe6c9405e3a75960f34b822baef3</originalsourceid><addsrcrecordid>eNplkM1OwzAQhC0EEqHwApz8Agb_Jz6ithREJVQIZ2uT2CKQxMhOELw9qYq4cFrtrL7RziB0yegVU0xdM6WNMJpKwQU1jNP8CGV7kcwqO0YZNdwQo7k5RWcpvVHKCipZhtbPoXc4ujR1Y8LBYxdjiNh9QjfB2IYB-3kFPISBbGBKqYUBp7afusO1d-NraM7RiYcuuYvfuUAvt-tyeUe2j5v75c2W1EzQkngwQAWISstCNrlRIle5LygXjRbeV1px573TtZFUOQG5miN5IauC8wqcFwvED751DClF5-1HbHuI35ZRuy_C_i9ihsgBatPovv4IiO9W5_MHdldKq5arVfH0sLOl-AFaTF-l</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Some results of error evaluation for a non-Gaussian simulation method</title><source>De Gruyter journals</source><creator>Akian, Jean-Luc ; Puig, Bénédicte</creator><creatorcontrib>Akian, Jean-Luc ; Puig, Bénédicte</creatorcontrib><description>In a first part of the paper a simulation method for a strictly stationary non-Gaussian process with given one-dimensional marginal distribution (or N-first statistical moments) and autocorrelation function is recalled. This method was already widely treated in the articles [14] and [13]. The objective of the present paper is twofold: first, to simplify this method - if by Mehler formula it is possible to find an autocorrelation function yielding the target autocorrelation function, and second, analyze the difference between the given autocorrelation function and the model one.</description><identifier>ISSN: 0929-9629</identifier><identifier>EISSN: 1569-3961</identifier><identifier>DOI: 10.1515/156939604323091207</identifier><language>eng</language><publisher>Genthiner Strasse 13 10875 Berlin Germany: Walter de Gruyter</publisher><subject>Hermite polynomials ; maximum entropy principle ; Monte-Carlo simulation ; non-Gaussian process</subject><ispartof>Monte Carlo methods and applications, 2004-03, Vol.10 (1), p.51-68</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c130T-fa9a03a3b6484d7953757f8023d63ffb652effe6c9405e3a75960f34b822baef3</citedby><cites>FETCH-LOGICAL-c130T-fa9a03a3b6484d7953757f8023d63ffb652effe6c9405e3a75960f34b822baef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Akian, Jean-Luc</creatorcontrib><creatorcontrib>Puig, Bénédicte</creatorcontrib><title>Some results of error evaluation for a non-Gaussian simulation method</title><title>Monte Carlo methods and applications</title><addtitle>Monte Carlo Methods and Applications</addtitle><description>In a first part of the paper a simulation method for a strictly stationary non-Gaussian process with given one-dimensional marginal distribution (or N-first statistical moments) and autocorrelation function is recalled. This method was already widely treated in the articles [14] and [13]. The objective of the present paper is twofold: first, to simplify this method - if by Mehler formula it is possible to find an autocorrelation function yielding the target autocorrelation function, and second, analyze the difference between the given autocorrelation function and the model one.</description><subject>Hermite polynomials</subject><subject>maximum entropy principle</subject><subject>Monte-Carlo simulation</subject><subject>non-Gaussian process</subject><issn>0929-9629</issn><issn>1569-3961</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNplkM1OwzAQhC0EEqHwApz8Agb_Jz6ithREJVQIZ2uT2CKQxMhOELw9qYq4cFrtrL7RziB0yegVU0xdM6WNMJpKwQU1jNP8CGV7kcwqO0YZNdwQo7k5RWcpvVHKCipZhtbPoXc4ujR1Y8LBYxdjiNh9QjfB2IYB-3kFPISBbGBKqYUBp7afusO1d-NraM7RiYcuuYvfuUAvt-tyeUe2j5v75c2W1EzQkngwQAWISstCNrlRIle5LygXjRbeV1px573TtZFUOQG5miN5IauC8wqcFwvED751DClF5-1HbHuI35ZRuy_C_i9ihsgBatPovv4IiO9W5_MHdldKq5arVfH0sLOl-AFaTF-l</recordid><startdate>20040301</startdate><enddate>20040301</enddate><creator>Akian, Jean-Luc</creator><creator>Puig, Bénédicte</creator><general>Walter de Gruyter</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20040301</creationdate><title>Some results of error evaluation for a non-Gaussian simulation method</title><author>Akian, Jean-Luc ; Puig, Bénédicte</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c130T-fa9a03a3b6484d7953757f8023d63ffb652effe6c9405e3a75960f34b822baef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Hermite polynomials</topic><topic>maximum entropy principle</topic><topic>Monte-Carlo simulation</topic><topic>non-Gaussian process</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akian, Jean-Luc</creatorcontrib><creatorcontrib>Puig, Bénédicte</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Monte Carlo methods and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akian, Jean-Luc</au><au>Puig, Bénédicte</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some results of error evaluation for a non-Gaussian simulation method</atitle><jtitle>Monte Carlo methods and applications</jtitle><addtitle>Monte Carlo Methods and Applications</addtitle><date>2004-03-01</date><risdate>2004</risdate><volume>10</volume><issue>1</issue><spage>51</spage><epage>68</epage><pages>51-68</pages><issn>0929-9629</issn><eissn>1569-3961</eissn><abstract>In a first part of the paper a simulation method for a strictly stationary non-Gaussian process with given one-dimensional marginal distribution (or N-first statistical moments) and autocorrelation function is recalled. This method was already widely treated in the articles [14] and [13]. The objective of the present paper is twofold: first, to simplify this method - if by Mehler formula it is possible to find an autocorrelation function yielding the target autocorrelation function, and second, analyze the difference between the given autocorrelation function and the model one.</abstract><cop>Genthiner Strasse 13 10875 Berlin Germany</cop><pub>Walter de Gruyter</pub><doi>10.1515/156939604323091207</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0929-9629 |
ispartof | Monte Carlo methods and applications, 2004-03, Vol.10 (1), p.51-68 |
issn | 0929-9629 1569-3961 |
language | eng |
recordid | cdi_crossref_primary_10_1515_156939604323091207 |
source | De Gruyter journals |
subjects | Hermite polynomials maximum entropy principle Monte-Carlo simulation non-Gaussian process |
title | Some results of error evaluation for a non-Gaussian simulation method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T18%3A52%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20results%20of%20error%20evaluation%20for%20a%20non-Gaussian%20simulation%20method&rft.jtitle=Monte%20Carlo%20methods%20and%20applications&rft.au=Akian,%20Jean-Luc&rft.date=2004-03-01&rft.volume=10&rft.issue=1&rft.spage=51&rft.epage=68&rft.pages=51-68&rft.issn=0929-9629&rft.eissn=1569-3961&rft_id=info:doi/10.1515/156939604323091207&rft_dat=%3Cistex_cross%3Eark_67375_QT4_5CDD8RKQ_T%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |