ANN - SQP Approach For NOx Emission Reduction In Coal Fired Boilers
In this research paper, predictive modelling of NOx emission of a 210 MW capacity pulverized coal-fired boiler and combustion parameter optimization to reduce NOx emission in flue gas is proposed. The effects of oxygen concentration in flue gas, coal properties, coal flow, boiler load, air distribut...
Gespeichert in:
Veröffentlicht in: | International journal of emerging electric power systems 2012-07, Vol.13 (3) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | International journal of emerging electric power systems |
container_volume | 13 |
creator | Balamurugan, Ilamathi Gounder, Selladurai V. Kulendran, Balamurugan |
description | In this research paper, predictive modelling of NOx emission of a 210 MW capacity pulverized coal-fired boiler and combustion parameter optimization to reduce NOx emission in flue gas is proposed. The effects of oxygen concentration in flue gas, coal properties, coal flow, boiler load, air distribution scheme, flue gas outlet temperature and nozzle tilt were studied. The data collected from parametric field experiments were used to build a feed-forward back-propagation artificial neural net (ANN). The coal combustion parameters were used as inputs and NOx emission as outputs of the model. The ANN model was developed for full load condition and its predicted values were verified with the actual values. The algebraic equation containing weights and biases of the trained net was used as fitness function in sequential quadratic programming (SQP) to find the optimum level of input operating conditions for low NOx emission. The results proved that the proposed approach could be used for generating feasible operating conditions. |
doi_str_mv | 10.1515/1553-779X.2960 |
format | Article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1515_1553_779X_2960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_QT4_FX4V2Z82_L</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2133-b1cfc67479855352936ae5aa6ba45251ece7a59b193de41edc0d5d2ea175bf0d3</originalsourceid><addsrcrecordid>eNp1kF9PwjAUxRujiYi--twvMOyfdWWPuDAlISCKhvjSdO2dDgclLUT49m7BEF98uic3-d17zkHolpIeFVTcUSF4JGW66LE0IWeoc1qc_9GX6CqEJSFc9CXpoGwwmeAIv8ye8GCz8U6bT5w7jyfTPR6uqhAqt8bPYHdm26rRGmdO1zivPFh876oafLhGF6WuA9z8zi56zYfz7DEaTx9G2WAcGUY5jwpqSpPIWKb9xoxgKU80CK2TQseCCQoGpBZpQVNuIaZgDbHCMtBUiqIklndR73jXeBeCh1JtfLXS_qAoUW0Fqk2p2pSqraAB0iPwresteAsffndohFq6nV83Vv8BG7cNGx3ZKmxhf_qk_ZdKJJdCzeaxyhfxG3vvMzXmP_Mubkk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ANN - SQP Approach For NOx Emission Reduction In Coal Fired Boilers</title><source>De Gruyter journals</source><creator>Balamurugan, Ilamathi ; Gounder, Selladurai V. ; Kulendran, Balamurugan</creator><creatorcontrib>Balamurugan, Ilamathi ; Gounder, Selladurai V. ; Kulendran, Balamurugan</creatorcontrib><description>In this research paper, predictive modelling of NOx emission of a 210 MW capacity pulverized coal-fired boiler and combustion parameter optimization to reduce NOx emission in flue gas is proposed. The effects of oxygen concentration in flue gas, coal properties, coal flow, boiler load, air distribution scheme, flue gas outlet temperature and nozzle tilt were studied. The data collected from parametric field experiments were used to build a feed-forward back-propagation artificial neural net (ANN). The coal combustion parameters were used as inputs and NOx emission as outputs of the model. The ANN model was developed for full load condition and its predicted values were verified with the actual values. The algebraic equation containing weights and biases of the trained net was used as fitness function in sequential quadratic programming (SQP) to find the optimum level of input operating conditions for low NOx emission. The results proved that the proposed approach could be used for generating feasible operating conditions.</description><identifier>ISSN: 1553-779X</identifier><identifier>EISSN: 1553-779X</identifier><identifier>DOI: 10.1515/1553-779X.2960</identifier><language>eng</language><publisher>De Gruyter</publisher><subject>coal ; environmental studies ; neural networks ; optimization ; sequential quadratic programming</subject><ispartof>International journal of emerging electric power systems, 2012-07, Vol.13 (3)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2133-b1cfc67479855352936ae5aa6ba45251ece7a59b193de41edc0d5d2ea175bf0d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/1553-779X.2960/pdf$$EPDF$$P50$$Gwalterdegruyter$$H</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/1553-779X.2960/html$$EHTML$$P50$$Gwalterdegruyter$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,66761,68545</link.rule.ids></links><search><creatorcontrib>Balamurugan, Ilamathi</creatorcontrib><creatorcontrib>Gounder, Selladurai V.</creatorcontrib><creatorcontrib>Kulendran, Balamurugan</creatorcontrib><title>ANN - SQP Approach For NOx Emission Reduction In Coal Fired Boilers</title><title>International journal of emerging electric power systems</title><description>In this research paper, predictive modelling of NOx emission of a 210 MW capacity pulverized coal-fired boiler and combustion parameter optimization to reduce NOx emission in flue gas is proposed. The effects of oxygen concentration in flue gas, coal properties, coal flow, boiler load, air distribution scheme, flue gas outlet temperature and nozzle tilt were studied. The data collected from parametric field experiments were used to build a feed-forward back-propagation artificial neural net (ANN). The coal combustion parameters were used as inputs and NOx emission as outputs of the model. The ANN model was developed for full load condition and its predicted values were verified with the actual values. The algebraic equation containing weights and biases of the trained net was used as fitness function in sequential quadratic programming (SQP) to find the optimum level of input operating conditions for low NOx emission. The results proved that the proposed approach could be used for generating feasible operating conditions.</description><subject>coal</subject><subject>environmental studies</subject><subject>neural networks</subject><subject>optimization</subject><subject>sequential quadratic programming</subject><issn>1553-779X</issn><issn>1553-779X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kF9PwjAUxRujiYi--twvMOyfdWWPuDAlISCKhvjSdO2dDgclLUT49m7BEF98uic3-d17zkHolpIeFVTcUSF4JGW66LE0IWeoc1qc_9GX6CqEJSFc9CXpoGwwmeAIv8ye8GCz8U6bT5w7jyfTPR6uqhAqt8bPYHdm26rRGmdO1zivPFh876oafLhGF6WuA9z8zi56zYfz7DEaTx9G2WAcGUY5jwpqSpPIWKb9xoxgKU80CK2TQseCCQoGpBZpQVNuIaZgDbHCMtBUiqIklndR73jXeBeCh1JtfLXS_qAoUW0Fqk2p2pSqraAB0iPwresteAsffndohFq6nV83Vv8BG7cNGx3ZKmxhf_qk_ZdKJJdCzeaxyhfxG3vvMzXmP_Mubkk</recordid><startdate>20120706</startdate><enddate>20120706</enddate><creator>Balamurugan, Ilamathi</creator><creator>Gounder, Selladurai V.</creator><creator>Kulendran, Balamurugan</creator><general>De Gruyter</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120706</creationdate><title>ANN - SQP Approach For NOx Emission Reduction In Coal Fired Boilers</title><author>Balamurugan, Ilamathi ; Gounder, Selladurai V. ; Kulendran, Balamurugan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2133-b1cfc67479855352936ae5aa6ba45251ece7a59b193de41edc0d5d2ea175bf0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>coal</topic><topic>environmental studies</topic><topic>neural networks</topic><topic>optimization</topic><topic>sequential quadratic programming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balamurugan, Ilamathi</creatorcontrib><creatorcontrib>Gounder, Selladurai V.</creatorcontrib><creatorcontrib>Kulendran, Balamurugan</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>International journal of emerging electric power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balamurugan, Ilamathi</au><au>Gounder, Selladurai V.</au><au>Kulendran, Balamurugan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ANN - SQP Approach For NOx Emission Reduction In Coal Fired Boilers</atitle><jtitle>International journal of emerging electric power systems</jtitle><date>2012-07-06</date><risdate>2012</risdate><volume>13</volume><issue>3</issue><issn>1553-779X</issn><eissn>1553-779X</eissn><abstract>In this research paper, predictive modelling of NOx emission of a 210 MW capacity pulverized coal-fired boiler and combustion parameter optimization to reduce NOx emission in flue gas is proposed. The effects of oxygen concentration in flue gas, coal properties, coal flow, boiler load, air distribution scheme, flue gas outlet temperature and nozzle tilt were studied. The data collected from parametric field experiments were used to build a feed-forward back-propagation artificial neural net (ANN). The coal combustion parameters were used as inputs and NOx emission as outputs of the model. The ANN model was developed for full load condition and its predicted values were verified with the actual values. The algebraic equation containing weights and biases of the trained net was used as fitness function in sequential quadratic programming (SQP) to find the optimum level of input operating conditions for low NOx emission. The results proved that the proposed approach could be used for generating feasible operating conditions.</abstract><pub>De Gruyter</pub><doi>10.1515/1553-779X.2960</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-779X |
ispartof | International journal of emerging electric power systems, 2012-07, Vol.13 (3) |
issn | 1553-779X 1553-779X |
language | eng |
recordid | cdi_crossref_primary_10_1515_1553_779X_2960 |
source | De Gruyter journals |
subjects | coal environmental studies neural networks optimization sequential quadratic programming |
title | ANN - SQP Approach For NOx Emission Reduction In Coal Fired Boilers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T14%3A39%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ANN%20-%20SQP%20Approach%20For%20NOx%20Emission%20Reduction%20In%20Coal%20Fired%20Boilers&rft.jtitle=International%20journal%20of%20emerging%20electric%20power%20systems&rft.au=Balamurugan,%20Ilamathi&rft.date=2012-07-06&rft.volume=13&rft.issue=3&rft.issn=1553-779X&rft.eissn=1553-779X&rft_id=info:doi/10.1515/1553-779X.2960&rft_dat=%3Cistex_cross%3Eark_67375_QT4_FX4V2Z82_L%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |