ANN - SQP Approach For NOx Emission Reduction In Coal Fired Boilers

In this research paper, predictive modelling of NOx emission of a 210 MW capacity pulverized coal-fired boiler and combustion parameter optimization to reduce NOx emission in flue gas is proposed. The effects of oxygen concentration in flue gas, coal properties, coal flow, boiler load, air distribut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of emerging electric power systems 2012-07, Vol.13 (3)
Hauptverfasser: Balamurugan, Ilamathi, Gounder, Selladurai V., Kulendran, Balamurugan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title International journal of emerging electric power systems
container_volume 13
creator Balamurugan, Ilamathi
Gounder, Selladurai V.
Kulendran, Balamurugan
description In this research paper, predictive modelling of NOx emission of a 210 MW capacity pulverized coal-fired boiler and combustion parameter optimization to reduce NOx emission in flue gas is proposed. The effects of oxygen concentration in flue gas, coal properties, coal flow, boiler load, air distribution scheme, flue gas outlet temperature and nozzle tilt were studied. The data collected from parametric field experiments were used to build a feed-forward back-propagation artificial neural net (ANN). The coal combustion parameters were used as inputs and NOx emission as outputs of the model. The ANN model was developed for full load condition and its predicted values were verified with the actual values. The algebraic equation containing weights and biases of the trained net was used as fitness function in sequential quadratic programming (SQP) to find the optimum level of input operating conditions for low NOx emission. The results proved that the proposed approach could be used for generating feasible operating conditions.
doi_str_mv 10.1515/1553-779X.2960
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1515_1553_779X_2960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_QT4_FX4V2Z82_L</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2133-b1cfc67479855352936ae5aa6ba45251ece7a59b193de41edc0d5d2ea175bf0d3</originalsourceid><addsrcrecordid>eNp1kF9PwjAUxRujiYi--twvMOyfdWWPuDAlISCKhvjSdO2dDgclLUT49m7BEF98uic3-d17zkHolpIeFVTcUSF4JGW66LE0IWeoc1qc_9GX6CqEJSFc9CXpoGwwmeAIv8ye8GCz8U6bT5w7jyfTPR6uqhAqt8bPYHdm26rRGmdO1zivPFh876oafLhGF6WuA9z8zi56zYfz7DEaTx9G2WAcGUY5jwpqSpPIWKb9xoxgKU80CK2TQseCCQoGpBZpQVNuIaZgDbHCMtBUiqIklndR73jXeBeCh1JtfLXS_qAoUW0Fqk2p2pSqraAB0iPwresteAsffndohFq6nV83Vv8BG7cNGx3ZKmxhf_qk_ZdKJJdCzeaxyhfxG3vvMzXmP_Mubkk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ANN - SQP Approach For NOx Emission Reduction In Coal Fired Boilers</title><source>De Gruyter journals</source><creator>Balamurugan, Ilamathi ; Gounder, Selladurai V. ; Kulendran, Balamurugan</creator><creatorcontrib>Balamurugan, Ilamathi ; Gounder, Selladurai V. ; Kulendran, Balamurugan</creatorcontrib><description>In this research paper, predictive modelling of NOx emission of a 210 MW capacity pulverized coal-fired boiler and combustion parameter optimization to reduce NOx emission in flue gas is proposed. The effects of oxygen concentration in flue gas, coal properties, coal flow, boiler load, air distribution scheme, flue gas outlet temperature and nozzle tilt were studied. The data collected from parametric field experiments were used to build a feed-forward back-propagation artificial neural net (ANN). The coal combustion parameters were used as inputs and NOx emission as outputs of the model. The ANN model was developed for full load condition and its predicted values were verified with the actual values. The algebraic equation containing weights and biases of the trained net was used as fitness function in sequential quadratic programming (SQP) to find the optimum level of input operating conditions for low NOx emission. The results proved that the proposed approach could be used for generating feasible operating conditions.</description><identifier>ISSN: 1553-779X</identifier><identifier>EISSN: 1553-779X</identifier><identifier>DOI: 10.1515/1553-779X.2960</identifier><language>eng</language><publisher>De Gruyter</publisher><subject>coal ; environmental studies ; neural networks ; optimization ; sequential quadratic programming</subject><ispartof>International journal of emerging electric power systems, 2012-07, Vol.13 (3)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2133-b1cfc67479855352936ae5aa6ba45251ece7a59b193de41edc0d5d2ea175bf0d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/1553-779X.2960/pdf$$EPDF$$P50$$Gwalterdegruyter$$H</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/1553-779X.2960/html$$EHTML$$P50$$Gwalterdegruyter$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,66761,68545</link.rule.ids></links><search><creatorcontrib>Balamurugan, Ilamathi</creatorcontrib><creatorcontrib>Gounder, Selladurai V.</creatorcontrib><creatorcontrib>Kulendran, Balamurugan</creatorcontrib><title>ANN - SQP Approach For NOx Emission Reduction In Coal Fired Boilers</title><title>International journal of emerging electric power systems</title><description>In this research paper, predictive modelling of NOx emission of a 210 MW capacity pulverized coal-fired boiler and combustion parameter optimization to reduce NOx emission in flue gas is proposed. The effects of oxygen concentration in flue gas, coal properties, coal flow, boiler load, air distribution scheme, flue gas outlet temperature and nozzle tilt were studied. The data collected from parametric field experiments were used to build a feed-forward back-propagation artificial neural net (ANN). The coal combustion parameters were used as inputs and NOx emission as outputs of the model. The ANN model was developed for full load condition and its predicted values were verified with the actual values. The algebraic equation containing weights and biases of the trained net was used as fitness function in sequential quadratic programming (SQP) to find the optimum level of input operating conditions for low NOx emission. The results proved that the proposed approach could be used for generating feasible operating conditions.</description><subject>coal</subject><subject>environmental studies</subject><subject>neural networks</subject><subject>optimization</subject><subject>sequential quadratic programming</subject><issn>1553-779X</issn><issn>1553-779X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kF9PwjAUxRujiYi--twvMOyfdWWPuDAlISCKhvjSdO2dDgclLUT49m7BEF98uic3-d17zkHolpIeFVTcUSF4JGW66LE0IWeoc1qc_9GX6CqEJSFc9CXpoGwwmeAIv8ye8GCz8U6bT5w7jyfTPR6uqhAqt8bPYHdm26rRGmdO1zivPFh876oafLhGF6WuA9z8zi56zYfz7DEaTx9G2WAcGUY5jwpqSpPIWKb9xoxgKU80CK2TQseCCQoGpBZpQVNuIaZgDbHCMtBUiqIklndR73jXeBeCh1JtfLXS_qAoUW0Fqk2p2pSqraAB0iPwresteAsffndohFq6nV83Vv8BG7cNGx3ZKmxhf_qk_ZdKJJdCzeaxyhfxG3vvMzXmP_Mubkk</recordid><startdate>20120706</startdate><enddate>20120706</enddate><creator>Balamurugan, Ilamathi</creator><creator>Gounder, Selladurai V.</creator><creator>Kulendran, Balamurugan</creator><general>De Gruyter</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120706</creationdate><title>ANN - SQP Approach For NOx Emission Reduction In Coal Fired Boilers</title><author>Balamurugan, Ilamathi ; Gounder, Selladurai V. ; Kulendran, Balamurugan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2133-b1cfc67479855352936ae5aa6ba45251ece7a59b193de41edc0d5d2ea175bf0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>coal</topic><topic>environmental studies</topic><topic>neural networks</topic><topic>optimization</topic><topic>sequential quadratic programming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balamurugan, Ilamathi</creatorcontrib><creatorcontrib>Gounder, Selladurai V.</creatorcontrib><creatorcontrib>Kulendran, Balamurugan</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>International journal of emerging electric power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balamurugan, Ilamathi</au><au>Gounder, Selladurai V.</au><au>Kulendran, Balamurugan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ANN - SQP Approach For NOx Emission Reduction In Coal Fired Boilers</atitle><jtitle>International journal of emerging electric power systems</jtitle><date>2012-07-06</date><risdate>2012</risdate><volume>13</volume><issue>3</issue><issn>1553-779X</issn><eissn>1553-779X</eissn><abstract>In this research paper, predictive modelling of NOx emission of a 210 MW capacity pulverized coal-fired boiler and combustion parameter optimization to reduce NOx emission in flue gas is proposed. The effects of oxygen concentration in flue gas, coal properties, coal flow, boiler load, air distribution scheme, flue gas outlet temperature and nozzle tilt were studied. The data collected from parametric field experiments were used to build a feed-forward back-propagation artificial neural net (ANN). The coal combustion parameters were used as inputs and NOx emission as outputs of the model. The ANN model was developed for full load condition and its predicted values were verified with the actual values. The algebraic equation containing weights and biases of the trained net was used as fitness function in sequential quadratic programming (SQP) to find the optimum level of input operating conditions for low NOx emission. The results proved that the proposed approach could be used for generating feasible operating conditions.</abstract><pub>De Gruyter</pub><doi>10.1515/1553-779X.2960</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1553-779X
ispartof International journal of emerging electric power systems, 2012-07, Vol.13 (3)
issn 1553-779X
1553-779X
language eng
recordid cdi_crossref_primary_10_1515_1553_779X_2960
source De Gruyter journals
subjects coal
environmental studies
neural networks
optimization
sequential quadratic programming
title ANN - SQP Approach For NOx Emission Reduction In Coal Fired Boilers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T14%3A39%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ANN%20-%20SQP%20Approach%20For%20NOx%20Emission%20Reduction%20In%20Coal%20Fired%20Boilers&rft.jtitle=International%20journal%20of%20emerging%20electric%20power%20systems&rft.au=Balamurugan,%20Ilamathi&rft.date=2012-07-06&rft.volume=13&rft.issue=3&rft.issn=1553-779X&rft.eissn=1553-779X&rft_id=info:doi/10.1515/1553-779X.2960&rft_dat=%3Cistex_cross%3Eark_67375_QT4_FX4V2Z82_L%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true