Dynamic Relationship Marketing

Firms routinely engage in relationship marketing (RM) efforts to improve their relationships with business partners, and extant research has documented the effectiveness of various RM strategies. According to the perspective proposed in this article, as customers migrate through different relationsh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of marketing 2016-09, Vol.80 (5), p.53-75
Hauptverfasser: Zhang, Jonathan Z., Watson, George F., Palmatier, Robert W., Dant, Rajiv P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 75
container_issue 5
container_start_page 53
container_title Journal of marketing
container_volume 80
creator Zhang, Jonathan Z.
Watson, George F.
Palmatier, Robert W.
Dant, Rajiv P.
description Firms routinely engage in relationship marketing (RM) efforts to improve their relationships with business partners, and extant research has documented the effectiveness of various RM strategies. According to the perspective proposed in this article, as customers migrate through different relationship states over time, not all RM strategies are equally effective, so it is possible to identify the most effective RM strategies given customers' states. The authors apply a multivariate hidden Markov model to a six-year longitudinal data set of 552 business-to-business relationships maintained by a Fortune 500 firm. The analysis identifies four latent buyer-seller relationship states, according to each customer's level of commitment, trust, dependence, and relational norms, and it parsimoniously captures customers' migration across relationship states through three positive (exploration, endowment, recovery) and two negative (neglect, betrayal) migration mechanisms. The most effective RM strategies across migration paths can help firms promote customer migration to higher performance states and prevent deterioration to poorer ones. A counterfactual elasticity analysis compares the relative importance of different migration strategies at various relationship stages. This research thus moves beyond extant RM literature by focusing on the differential effectiveness of RM strategies across relationship states, and it provides managerial guidance regarding efficient, dynamic resource allocations.
doi_str_mv 10.1509/jm.15.0066
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1509_jm_15_0066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44134962</jstor_id><sage_id>10.1509_jm.15.0066</sage_id><sourcerecordid>44134962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-28fdb34f35ee2a746db9b8e85a794b3b94a9ea6f44b8dc5a9ebcfd4679ca82bd3</originalsourceid><addsrcrecordid>eNptj0tLxDAUhYMoWEc37pXZCULHPG7zWMr4hBFBdB2SNBlbp-2Q1MX8ezNUXHk3Hxc-DucgdE7wglRY3bRd5gJjzg9QQSoQpSCyOkQFxpSWFKg6RicptTgflaJAl3e73nSNm7_5jRmboU-fzXb-YuKXH5t-fYqOgtkkf_bLGfp4uH9fPpWr18fn5e2qdEDxWFIZassgsMp7agTw2iorvayMUGCZVWCUNzwAWFm7Kj_WhRq4UM5Iams2Q9dTrotDStEHvY1NZ-JOE6z3y3TbZer9sixfTXIya6_b4Tv2udv_5sVktmkc4l8mAGGgOGU_SdlXLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dynamic Relationship Marketing</title><source>SAGE Complete</source><source>EBSCOhost Business Source Complete</source><source>Jstor Complete Legacy</source><creator>Zhang, Jonathan Z. ; Watson, George F. ; Palmatier, Robert W. ; Dant, Rajiv P.</creator><creatorcontrib>Zhang, Jonathan Z. ; Watson, George F. ; Palmatier, Robert W. ; Dant, Rajiv P.</creatorcontrib><description>Firms routinely engage in relationship marketing (RM) efforts to improve their relationships with business partners, and extant research has documented the effectiveness of various RM strategies. According to the perspective proposed in this article, as customers migrate through different relationship states over time, not all RM strategies are equally effective, so it is possible to identify the most effective RM strategies given customers' states. The authors apply a multivariate hidden Markov model to a six-year longitudinal data set of 552 business-to-business relationships maintained by a Fortune 500 firm. The analysis identifies four latent buyer-seller relationship states, according to each customer's level of commitment, trust, dependence, and relational norms, and it parsimoniously captures customers' migration across relationship states through three positive (exploration, endowment, recovery) and two negative (neglect, betrayal) migration mechanisms. The most effective RM strategies across migration paths can help firms promote customer migration to higher performance states and prevent deterioration to poorer ones. A counterfactual elasticity analysis compares the relative importance of different migration strategies at various relationship stages. This research thus moves beyond extant RM literature by focusing on the differential effectiveness of RM strategies across relationship states, and it provides managerial guidance regarding efficient, dynamic resource allocations.</description><identifier>ISSN: 0022-2429</identifier><identifier>EISSN: 1547-7185</identifier><identifier>DOI: 10.1509/jm.15.0066</identifier><language>eng</language><publisher>Los Angeles, CA: American Marketing Association</publisher><subject>Betrayal ; Business to business ; Customers ; Endowments ; Market mechanisms ; Marketing strategies ; Product mixes ; Relationship marketing ; Sales growth ; Trust</subject><ispartof>Journal of marketing, 2016-09, Vol.80 (5), p.53-75</ispartof><rights>Copyright © 2016, American Marketing Association</rights><rights>2016 American Marketing Association</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-28fdb34f35ee2a746db9b8e85a794b3b94a9ea6f44b8dc5a9ebcfd4679ca82bd3</citedby><cites>FETCH-LOGICAL-c420t-28fdb34f35ee2a746db9b8e85a794b3b94a9ea6f44b8dc5a9ebcfd4679ca82bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/44134962$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/44134962$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,21799,27903,27904,43600,43601,57996,58229</link.rule.ids></links><search><creatorcontrib>Zhang, Jonathan Z.</creatorcontrib><creatorcontrib>Watson, George F.</creatorcontrib><creatorcontrib>Palmatier, Robert W.</creatorcontrib><creatorcontrib>Dant, Rajiv P.</creatorcontrib><title>Dynamic Relationship Marketing</title><title>Journal of marketing</title><description>Firms routinely engage in relationship marketing (RM) efforts to improve their relationships with business partners, and extant research has documented the effectiveness of various RM strategies. According to the perspective proposed in this article, as customers migrate through different relationship states over time, not all RM strategies are equally effective, so it is possible to identify the most effective RM strategies given customers' states. The authors apply a multivariate hidden Markov model to a six-year longitudinal data set of 552 business-to-business relationships maintained by a Fortune 500 firm. The analysis identifies four latent buyer-seller relationship states, according to each customer's level of commitment, trust, dependence, and relational norms, and it parsimoniously captures customers' migration across relationship states through three positive (exploration, endowment, recovery) and two negative (neglect, betrayal) migration mechanisms. The most effective RM strategies across migration paths can help firms promote customer migration to higher performance states and prevent deterioration to poorer ones. A counterfactual elasticity analysis compares the relative importance of different migration strategies at various relationship stages. This research thus moves beyond extant RM literature by focusing on the differential effectiveness of RM strategies across relationship states, and it provides managerial guidance regarding efficient, dynamic resource allocations.</description><subject>Betrayal</subject><subject>Business to business</subject><subject>Customers</subject><subject>Endowments</subject><subject>Market mechanisms</subject><subject>Marketing strategies</subject><subject>Product mixes</subject><subject>Relationship marketing</subject><subject>Sales growth</subject><subject>Trust</subject><issn>0022-2429</issn><issn>1547-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNptj0tLxDAUhYMoWEc37pXZCULHPG7zWMr4hBFBdB2SNBlbp-2Q1MX8ezNUXHk3Hxc-DucgdE7wglRY3bRd5gJjzg9QQSoQpSCyOkQFxpSWFKg6RicptTgflaJAl3e73nSNm7_5jRmboU-fzXb-YuKXH5t-fYqOgtkkf_bLGfp4uH9fPpWr18fn5e2qdEDxWFIZassgsMp7agTw2iorvayMUGCZVWCUNzwAWFm7Kj_WhRq4UM5Iams2Q9dTrotDStEHvY1NZ-JOE6z3y3TbZer9sixfTXIya6_b4Tv2udv_5sVktmkc4l8mAGGgOGU_SdlXLg</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Zhang, Jonathan Z.</creator><creator>Watson, George F.</creator><creator>Palmatier, Robert W.</creator><creator>Dant, Rajiv P.</creator><general>American Marketing Association</general><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160901</creationdate><title>Dynamic Relationship Marketing</title><author>Zhang, Jonathan Z. ; Watson, George F. ; Palmatier, Robert W. ; Dant, Rajiv P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-28fdb34f35ee2a746db9b8e85a794b3b94a9ea6f44b8dc5a9ebcfd4679ca82bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Betrayal</topic><topic>Business to business</topic><topic>Customers</topic><topic>Endowments</topic><topic>Market mechanisms</topic><topic>Marketing strategies</topic><topic>Product mixes</topic><topic>Relationship marketing</topic><topic>Sales growth</topic><topic>Trust</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jonathan Z.</creatorcontrib><creatorcontrib>Watson, George F.</creatorcontrib><creatorcontrib>Palmatier, Robert W.</creatorcontrib><creatorcontrib>Dant, Rajiv P.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of marketing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jonathan Z.</au><au>Watson, George F.</au><au>Palmatier, Robert W.</au><au>Dant, Rajiv P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Relationship Marketing</atitle><jtitle>Journal of marketing</jtitle><date>2016-09-01</date><risdate>2016</risdate><volume>80</volume><issue>5</issue><spage>53</spage><epage>75</epage><pages>53-75</pages><issn>0022-2429</issn><eissn>1547-7185</eissn><abstract>Firms routinely engage in relationship marketing (RM) efforts to improve their relationships with business partners, and extant research has documented the effectiveness of various RM strategies. According to the perspective proposed in this article, as customers migrate through different relationship states over time, not all RM strategies are equally effective, so it is possible to identify the most effective RM strategies given customers' states. The authors apply a multivariate hidden Markov model to a six-year longitudinal data set of 552 business-to-business relationships maintained by a Fortune 500 firm. The analysis identifies four latent buyer-seller relationship states, according to each customer's level of commitment, trust, dependence, and relational norms, and it parsimoniously captures customers' migration across relationship states through three positive (exploration, endowment, recovery) and two negative (neglect, betrayal) migration mechanisms. The most effective RM strategies across migration paths can help firms promote customer migration to higher performance states and prevent deterioration to poorer ones. A counterfactual elasticity analysis compares the relative importance of different migration strategies at various relationship stages. This research thus moves beyond extant RM literature by focusing on the differential effectiveness of RM strategies across relationship states, and it provides managerial guidance regarding efficient, dynamic resource allocations.</abstract><cop>Los Angeles, CA</cop><pub>American Marketing Association</pub><doi>10.1509/jm.15.0066</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2429
ispartof Journal of marketing, 2016-09, Vol.80 (5), p.53-75
issn 0022-2429
1547-7185
language eng
recordid cdi_crossref_primary_10_1509_jm_15_0066
source SAGE Complete; EBSCOhost Business Source Complete; Jstor Complete Legacy
subjects Betrayal
Business to business
Customers
Endowments
Market mechanisms
Marketing strategies
Product mixes
Relationship marketing
Sales growth
Trust
title Dynamic Relationship Marketing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A51%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Relationship%20Marketing&rft.jtitle=Journal%20of%20marketing&rft.au=Zhang,%20Jonathan%20Z.&rft.date=2016-09-01&rft.volume=80&rft.issue=5&rft.spage=53&rft.epage=75&rft.pages=53-75&rft.issn=0022-2429&rft.eissn=1547-7185&rft_id=info:doi/10.1509/jm.15.0066&rft_dat=%3Cjstor_cross%3E44134962%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=44134962&rft_sage_id=10.1509_jm.15.0066&rfr_iscdi=true