Dynamic Relationship Marketing
Firms routinely engage in relationship marketing (RM) efforts to improve their relationships with business partners, and extant research has documented the effectiveness of various RM strategies. According to the perspective proposed in this article, as customers migrate through different relationsh...
Gespeichert in:
Veröffentlicht in: | Journal of marketing 2016-09, Vol.80 (5), p.53-75 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 75 |
---|---|
container_issue | 5 |
container_start_page | 53 |
container_title | Journal of marketing |
container_volume | 80 |
creator | Zhang, Jonathan Z. Watson, George F. Palmatier, Robert W. Dant, Rajiv P. |
description | Firms routinely engage in relationship marketing (RM) efforts to improve their relationships with business partners, and extant research has documented the effectiveness of various RM strategies. According to the perspective proposed in this article, as customers migrate through different relationship states over time, not all RM strategies are equally effective, so it is possible to identify the most effective RM strategies given customers' states. The authors apply a multivariate hidden Markov model to a six-year longitudinal data set of 552 business-to-business relationships maintained by a Fortune 500 firm. The analysis identifies four latent buyer-seller relationship states, according to each customer's level of commitment, trust, dependence, and relational norms, and it parsimoniously captures customers' migration across relationship states through three positive (exploration, endowment, recovery) and two negative (neglect, betrayal) migration mechanisms. The most effective RM strategies across migration paths can help firms promote customer migration to higher performance states and prevent deterioration to poorer ones. A counterfactual elasticity analysis compares the relative importance of different migration strategies at various relationship stages. This research thus moves beyond extant RM literature by focusing on the differential effectiveness of RM strategies across relationship states, and it provides managerial guidance regarding efficient, dynamic resource allocations. |
doi_str_mv | 10.1509/jm.15.0066 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1509_jm_15_0066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44134962</jstor_id><sage_id>10.1509_jm.15.0066</sage_id><sourcerecordid>44134962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-28fdb34f35ee2a746db9b8e85a794b3b94a9ea6f44b8dc5a9ebcfd4679ca82bd3</originalsourceid><addsrcrecordid>eNptj0tLxDAUhYMoWEc37pXZCULHPG7zWMr4hBFBdB2SNBlbp-2Q1MX8ezNUXHk3Hxc-DucgdE7wglRY3bRd5gJjzg9QQSoQpSCyOkQFxpSWFKg6RicptTgflaJAl3e73nSNm7_5jRmboU-fzXb-YuKXH5t-fYqOgtkkf_bLGfp4uH9fPpWr18fn5e2qdEDxWFIZassgsMp7agTw2iorvayMUGCZVWCUNzwAWFm7Kj_WhRq4UM5Iams2Q9dTrotDStEHvY1NZ-JOE6z3y3TbZer9sixfTXIya6_b4Tv2udv_5sVktmkc4l8mAGGgOGU_SdlXLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dynamic Relationship Marketing</title><source>SAGE Complete</source><source>EBSCOhost Business Source Complete</source><source>Jstor Complete Legacy</source><creator>Zhang, Jonathan Z. ; Watson, George F. ; Palmatier, Robert W. ; Dant, Rajiv P.</creator><creatorcontrib>Zhang, Jonathan Z. ; Watson, George F. ; Palmatier, Robert W. ; Dant, Rajiv P.</creatorcontrib><description>Firms routinely engage in relationship marketing (RM) efforts to improve their relationships with business partners, and extant research has documented the effectiveness of various RM strategies. According to the perspective proposed in this article, as customers migrate through different relationship states over time, not all RM strategies are equally effective, so it is possible to identify the most effective RM strategies given customers' states. The authors apply a multivariate hidden Markov model to a six-year longitudinal data set of 552 business-to-business relationships maintained by a Fortune 500 firm. The analysis identifies four latent buyer-seller relationship states, according to each customer's level of commitment, trust, dependence, and relational norms, and it parsimoniously captures customers' migration across relationship states through three positive (exploration, endowment, recovery) and two negative (neglect, betrayal) migration mechanisms. The most effective RM strategies across migration paths can help firms promote customer migration to higher performance states and prevent deterioration to poorer ones. A counterfactual elasticity analysis compares the relative importance of different migration strategies at various relationship stages. This research thus moves beyond extant RM literature by focusing on the differential effectiveness of RM strategies across relationship states, and it provides managerial guidance regarding efficient, dynamic resource allocations.</description><identifier>ISSN: 0022-2429</identifier><identifier>EISSN: 1547-7185</identifier><identifier>DOI: 10.1509/jm.15.0066</identifier><language>eng</language><publisher>Los Angeles, CA: American Marketing Association</publisher><subject>Betrayal ; Business to business ; Customers ; Endowments ; Market mechanisms ; Marketing strategies ; Product mixes ; Relationship marketing ; Sales growth ; Trust</subject><ispartof>Journal of marketing, 2016-09, Vol.80 (5), p.53-75</ispartof><rights>Copyright © 2016, American Marketing Association</rights><rights>2016 American Marketing Association</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-28fdb34f35ee2a746db9b8e85a794b3b94a9ea6f44b8dc5a9ebcfd4679ca82bd3</citedby><cites>FETCH-LOGICAL-c420t-28fdb34f35ee2a746db9b8e85a794b3b94a9ea6f44b8dc5a9ebcfd4679ca82bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/44134962$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/44134962$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,21799,27903,27904,43600,43601,57996,58229</link.rule.ids></links><search><creatorcontrib>Zhang, Jonathan Z.</creatorcontrib><creatorcontrib>Watson, George F.</creatorcontrib><creatorcontrib>Palmatier, Robert W.</creatorcontrib><creatorcontrib>Dant, Rajiv P.</creatorcontrib><title>Dynamic Relationship Marketing</title><title>Journal of marketing</title><description>Firms routinely engage in relationship marketing (RM) efforts to improve their relationships with business partners, and extant research has documented the effectiveness of various RM strategies. According to the perspective proposed in this article, as customers migrate through different relationship states over time, not all RM strategies are equally effective, so it is possible to identify the most effective RM strategies given customers' states. The authors apply a multivariate hidden Markov model to a six-year longitudinal data set of 552 business-to-business relationships maintained by a Fortune 500 firm. The analysis identifies four latent buyer-seller relationship states, according to each customer's level of commitment, trust, dependence, and relational norms, and it parsimoniously captures customers' migration across relationship states through three positive (exploration, endowment, recovery) and two negative (neglect, betrayal) migration mechanisms. The most effective RM strategies across migration paths can help firms promote customer migration to higher performance states and prevent deterioration to poorer ones. A counterfactual elasticity analysis compares the relative importance of different migration strategies at various relationship stages. This research thus moves beyond extant RM literature by focusing on the differential effectiveness of RM strategies across relationship states, and it provides managerial guidance regarding efficient, dynamic resource allocations.</description><subject>Betrayal</subject><subject>Business to business</subject><subject>Customers</subject><subject>Endowments</subject><subject>Market mechanisms</subject><subject>Marketing strategies</subject><subject>Product mixes</subject><subject>Relationship marketing</subject><subject>Sales growth</subject><subject>Trust</subject><issn>0022-2429</issn><issn>1547-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNptj0tLxDAUhYMoWEc37pXZCULHPG7zWMr4hBFBdB2SNBlbp-2Q1MX8ezNUXHk3Hxc-DucgdE7wglRY3bRd5gJjzg9QQSoQpSCyOkQFxpSWFKg6RicptTgflaJAl3e73nSNm7_5jRmboU-fzXb-YuKXH5t-fYqOgtkkf_bLGfp4uH9fPpWr18fn5e2qdEDxWFIZassgsMp7agTw2iorvayMUGCZVWCUNzwAWFm7Kj_WhRq4UM5Iams2Q9dTrotDStEHvY1NZ-JOE6z3y3TbZer9sixfTXIya6_b4Tv2udv_5sVktmkc4l8mAGGgOGU_SdlXLg</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Zhang, Jonathan Z.</creator><creator>Watson, George F.</creator><creator>Palmatier, Robert W.</creator><creator>Dant, Rajiv P.</creator><general>American Marketing Association</general><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160901</creationdate><title>Dynamic Relationship Marketing</title><author>Zhang, Jonathan Z. ; Watson, George F. ; Palmatier, Robert W. ; Dant, Rajiv P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-28fdb34f35ee2a746db9b8e85a794b3b94a9ea6f44b8dc5a9ebcfd4679ca82bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Betrayal</topic><topic>Business to business</topic><topic>Customers</topic><topic>Endowments</topic><topic>Market mechanisms</topic><topic>Marketing strategies</topic><topic>Product mixes</topic><topic>Relationship marketing</topic><topic>Sales growth</topic><topic>Trust</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jonathan Z.</creatorcontrib><creatorcontrib>Watson, George F.</creatorcontrib><creatorcontrib>Palmatier, Robert W.</creatorcontrib><creatorcontrib>Dant, Rajiv P.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of marketing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jonathan Z.</au><au>Watson, George F.</au><au>Palmatier, Robert W.</au><au>Dant, Rajiv P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Relationship Marketing</atitle><jtitle>Journal of marketing</jtitle><date>2016-09-01</date><risdate>2016</risdate><volume>80</volume><issue>5</issue><spage>53</spage><epage>75</epage><pages>53-75</pages><issn>0022-2429</issn><eissn>1547-7185</eissn><abstract>Firms routinely engage in relationship marketing (RM) efforts to improve their relationships with business partners, and extant research has documented the effectiveness of various RM strategies. According to the perspective proposed in this article, as customers migrate through different relationship states over time, not all RM strategies are equally effective, so it is possible to identify the most effective RM strategies given customers' states. The authors apply a multivariate hidden Markov model to a six-year longitudinal data set of 552 business-to-business relationships maintained by a Fortune 500 firm. The analysis identifies four latent buyer-seller relationship states, according to each customer's level of commitment, trust, dependence, and relational norms, and it parsimoniously captures customers' migration across relationship states through three positive (exploration, endowment, recovery) and two negative (neglect, betrayal) migration mechanisms. The most effective RM strategies across migration paths can help firms promote customer migration to higher performance states and prevent deterioration to poorer ones. A counterfactual elasticity analysis compares the relative importance of different migration strategies at various relationship stages. This research thus moves beyond extant RM literature by focusing on the differential effectiveness of RM strategies across relationship states, and it provides managerial guidance regarding efficient, dynamic resource allocations.</abstract><cop>Los Angeles, CA</cop><pub>American Marketing Association</pub><doi>10.1509/jm.15.0066</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2429 |
ispartof | Journal of marketing, 2016-09, Vol.80 (5), p.53-75 |
issn | 0022-2429 1547-7185 |
language | eng |
recordid | cdi_crossref_primary_10_1509_jm_15_0066 |
source | SAGE Complete; EBSCOhost Business Source Complete; Jstor Complete Legacy |
subjects | Betrayal Business to business Customers Endowments Market mechanisms Marketing strategies Product mixes Relationship marketing Sales growth Trust |
title | Dynamic Relationship Marketing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A51%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Relationship%20Marketing&rft.jtitle=Journal%20of%20marketing&rft.au=Zhang,%20Jonathan%20Z.&rft.date=2016-09-01&rft.volume=80&rft.issue=5&rft.spage=53&rft.epage=75&rft.pages=53-75&rft.issn=0022-2429&rft.eissn=1547-7185&rft_id=info:doi/10.1509/jm.15.0066&rft_dat=%3Cjstor_cross%3E44134962%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=44134962&rft_sage_id=10.1509_jm.15.0066&rfr_iscdi=true |