DBG-PT: A Large Language Model Assisted Query Performance Regression Debugger

In this paper we explore the ability of Large Language Models (LLMs) in analyzing and comparing query plans, and resolving query performance regressions. We present DBG-PT, a query regression debugging framework powered by LLMs. DBG-PT keeps track of query execution instances, and detects slowdowns...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the VLDB Endowment 2024-08, Vol.17 (12), p.4337-4340
Hauptverfasser: Giannakouris, Victor, Trummer, Immanuel
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4340
container_issue 12
container_start_page 4337
container_title Proceedings of the VLDB Endowment
container_volume 17
creator Giannakouris, Victor
Trummer, Immanuel
description In this paper we explore the ability of Large Language Models (LLMs) in analyzing and comparing query plans, and resolving query performance regressions. We present DBG-PT, a query regression debugging framework powered by LLMs. DBG-PT keeps track of query execution instances, and detects slowdowns according to a user-defined regression factor. Once a regression is detected, DBG-PT leverages the capabilities of the underlying LLM in order to compare the regressed plan with a previously effective one, and comes up with tuning knob configurations in order to alleviate the regression. By exploiting textual information of the executed query plans, DBG-PT is able to integrate with close-to-zero implementation effort with any database system that supports the EXPLAIN clause. During the demonstration, we will showcase DBG-PT's ability to resolve query regressions using several real-world inspired scenarios, including plan changes because of index creations/deletions, or configuration changes. Furthermore, users will be able to experiment using ad-hoc, or predefined queries from the Join Order Benchmark (JOB) and TPC-H, and over MySQL and Postgres.
doi_str_mv 10.14778/3685800.3685869
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_14778_3685800_3685869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_14778_3685800_3685869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c126t-b402ddb818bf3dc5145c2fab6dba2bdfa6834a882d619d418f9897a5935b897b3</originalsourceid><addsrcrecordid>eNpNkD1PwzAURS0EEqWwM_oPpPgjdp7ZQgsFKRUFlTmy4-eoqG2Q3Qz990QlA8u9R7rSHQ4h95zNeF4U8CA1KGBsdm5tLshEcMUyYKa4_MfX5Calb8Y0aA4Tslo8LbP15pGWtLKxxSEPbW8HWHUed7RMaZuO6OlHj_FE1xhDF_f20CD9xDbiMHcHukDXty3GW3IV7C7h3dhT8vXyvJm_ZtX78m1eVlnDhT5mLmfCewccXJC-UTxXjQjWae-scD5YDTK3AMJrbnzOIRgwhVVGKjeAk1PC_n6b2KUUMdQ_cbu38VRzVp911KOOetQhfwGNXVHY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>DBG-PT: A Large Language Model Assisted Query Performance Regression Debugger</title><source>ACM Digital Library</source><creator>Giannakouris, Victor ; Trummer, Immanuel</creator><creatorcontrib>Giannakouris, Victor ; Trummer, Immanuel</creatorcontrib><description>In this paper we explore the ability of Large Language Models (LLMs) in analyzing and comparing query plans, and resolving query performance regressions. We present DBG-PT, a query regression debugging framework powered by LLMs. DBG-PT keeps track of query execution instances, and detects slowdowns according to a user-defined regression factor. Once a regression is detected, DBG-PT leverages the capabilities of the underlying LLM in order to compare the regressed plan with a previously effective one, and comes up with tuning knob configurations in order to alleviate the regression. By exploiting textual information of the executed query plans, DBG-PT is able to integrate with close-to-zero implementation effort with any database system that supports the EXPLAIN clause. During the demonstration, we will showcase DBG-PT's ability to resolve query regressions using several real-world inspired scenarios, including plan changes because of index creations/deletions, or configuration changes. Furthermore, users will be able to experiment using ad-hoc, or predefined queries from the Join Order Benchmark (JOB) and TPC-H, and over MySQL and Postgres.</description><identifier>ISSN: 2150-8097</identifier><identifier>EISSN: 2150-8097</identifier><identifier>DOI: 10.14778/3685800.3685869</identifier><language>eng</language><ispartof>Proceedings of the VLDB Endowment, 2024-08, Vol.17 (12), p.4337-4340</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c126t-b402ddb818bf3dc5145c2fab6dba2bdfa6834a882d619d418f9897a5935b897b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Giannakouris, Victor</creatorcontrib><creatorcontrib>Trummer, Immanuel</creatorcontrib><title>DBG-PT: A Large Language Model Assisted Query Performance Regression Debugger</title><title>Proceedings of the VLDB Endowment</title><description>In this paper we explore the ability of Large Language Models (LLMs) in analyzing and comparing query plans, and resolving query performance regressions. We present DBG-PT, a query regression debugging framework powered by LLMs. DBG-PT keeps track of query execution instances, and detects slowdowns according to a user-defined regression factor. Once a regression is detected, DBG-PT leverages the capabilities of the underlying LLM in order to compare the regressed plan with a previously effective one, and comes up with tuning knob configurations in order to alleviate the regression. By exploiting textual information of the executed query plans, DBG-PT is able to integrate with close-to-zero implementation effort with any database system that supports the EXPLAIN clause. During the demonstration, we will showcase DBG-PT's ability to resolve query regressions using several real-world inspired scenarios, including plan changes because of index creations/deletions, or configuration changes. Furthermore, users will be able to experiment using ad-hoc, or predefined queries from the Join Order Benchmark (JOB) and TPC-H, and over MySQL and Postgres.</description><issn>2150-8097</issn><issn>2150-8097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkD1PwzAURS0EEqWwM_oPpPgjdp7ZQgsFKRUFlTmy4-eoqG2Q3Qz990QlA8u9R7rSHQ4h95zNeF4U8CA1KGBsdm5tLshEcMUyYKa4_MfX5Calb8Y0aA4Tslo8LbP15pGWtLKxxSEPbW8HWHUed7RMaZuO6OlHj_FE1xhDF_f20CD9xDbiMHcHukDXty3GW3IV7C7h3dhT8vXyvJm_ZtX78m1eVlnDhT5mLmfCewccXJC-UTxXjQjWae-scD5YDTK3AMJrbnzOIRgwhVVGKjeAk1PC_n6b2KUUMdQ_cbu38VRzVp911KOOetQhfwGNXVHY</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Giannakouris, Victor</creator><creator>Trummer, Immanuel</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202408</creationdate><title>DBG-PT: A Large Language Model Assisted Query Performance Regression Debugger</title><author>Giannakouris, Victor ; Trummer, Immanuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c126t-b402ddb818bf3dc5145c2fab6dba2bdfa6834a882d619d418f9897a5935b897b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giannakouris, Victor</creatorcontrib><creatorcontrib>Trummer, Immanuel</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the VLDB Endowment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giannakouris, Victor</au><au>Trummer, Immanuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DBG-PT: A Large Language Model Assisted Query Performance Regression Debugger</atitle><jtitle>Proceedings of the VLDB Endowment</jtitle><date>2024-08</date><risdate>2024</risdate><volume>17</volume><issue>12</issue><spage>4337</spage><epage>4340</epage><pages>4337-4340</pages><issn>2150-8097</issn><eissn>2150-8097</eissn><abstract>In this paper we explore the ability of Large Language Models (LLMs) in analyzing and comparing query plans, and resolving query performance regressions. We present DBG-PT, a query regression debugging framework powered by LLMs. DBG-PT keeps track of query execution instances, and detects slowdowns according to a user-defined regression factor. Once a regression is detected, DBG-PT leverages the capabilities of the underlying LLM in order to compare the regressed plan with a previously effective one, and comes up with tuning knob configurations in order to alleviate the regression. By exploiting textual information of the executed query plans, DBG-PT is able to integrate with close-to-zero implementation effort with any database system that supports the EXPLAIN clause. During the demonstration, we will showcase DBG-PT's ability to resolve query regressions using several real-world inspired scenarios, including plan changes because of index creations/deletions, or configuration changes. Furthermore, users will be able to experiment using ad-hoc, or predefined queries from the Join Order Benchmark (JOB) and TPC-H, and over MySQL and Postgres.</abstract><doi>10.14778/3685800.3685869</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2150-8097
ispartof Proceedings of the VLDB Endowment, 2024-08, Vol.17 (12), p.4337-4340
issn 2150-8097
2150-8097
language eng
recordid cdi_crossref_primary_10_14778_3685800_3685869
source ACM Digital Library
title DBG-PT: A Large Language Model Assisted Query Performance Regression Debugger
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T14%3A59%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DBG-PT:%20A%20Large%20Language%20Model%20Assisted%20Query%20Performance%20Regression%20Debugger&rft.jtitle=Proceedings%20of%20the%20VLDB%20Endowment&rft.au=Giannakouris,%20Victor&rft.date=2024-08&rft.volume=17&rft.issue=12&rft.spage=4337&rft.epage=4340&rft.pages=4337-4340&rft.issn=2150-8097&rft.eissn=2150-8097&rft_id=info:doi/10.14778/3685800.3685869&rft_dat=%3Ccrossref%3E10_14778_3685800_3685869%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true