Cache Me If You Can: Accuracy-Aware Inference Engine for Differentially Private Data Exploration

Differential privacy (DP) allows data analysts to query databases that contain users' sensitive information while providing a quantifiable privacy guarantee to users. Recent interactive DP systems such as APEx provide accuracy guarantees over the query responses, but fail to support a large num...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the VLDB Endowment 2022-12, Vol.16 (4), p.574-586
Hauptverfasser: Mazmudar, Miti, Humphries, Thomas, Liu, Jiaxiang, Rafuse, Matthew, He, Xi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 586
container_issue 4
container_start_page 574
container_title Proceedings of the VLDB Endowment
container_volume 16
creator Mazmudar, Miti
Humphries, Thomas
Liu, Jiaxiang
Rafuse, Matthew
He, Xi
description Differential privacy (DP) allows data analysts to query databases that contain users' sensitive information while providing a quantifiable privacy guarantee to users. Recent interactive DP systems such as APEx provide accuracy guarantees over the query responses, but fail to support a large number of queries with a limited total privacy budget, as they process incoming queries independently from past queries. We present an interactive, accuracy-aware DP query engine, CacheDP , which utilizes a differentially private cache of past responses, to answer the current workload at a lower privacy budget, while meeting strict accuracy guarantees. We integrate complex DP mechanisms with our structured cache, through novel cache-aware DP cost optimization. Our thorough evaluation illustrates that CacheDP can accurately answer various workload sequences, while lowering the privacy loss as compared to related work.
doi_str_mv 10.14778/3574245.3574246
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_14778_3574245_3574246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_14778_3574245_3574246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c196t-87774789a4495d305ce9ff423cd6bd45ce103aa6c021f311d6955263364f7bef3</originalsourceid><addsrcrecordid>eNpNj7tOAzEQRS0EEiFQ0VDuD2yY8Yxn7BKteEQKokkKqpXjtQUICFpDwd-DyBZU597mSMeYC4QFsqq_JKds2S32lAMzs-ig9RD08N8-Nie1vgCIF_Qzc97F9JSb-9wsS_O4-2q6-H5qjkp8rfls4txsbq7X3V27erhddlerNmGQz9arKqsPkTm4gcClHEphS2mQ7cC_F4FilAQWCyEOEpyzQiRcdJsLzQ3svWnc1Trm0n-Mz29x_O4R-r-ofoqaKPQDspY7Uw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cache Me If You Can: Accuracy-Aware Inference Engine for Differentially Private Data Exploration</title><source>ACM Digital Library Complete</source><creator>Mazmudar, Miti ; Humphries, Thomas ; Liu, Jiaxiang ; Rafuse, Matthew ; He, Xi</creator><creatorcontrib>Mazmudar, Miti ; Humphries, Thomas ; Liu, Jiaxiang ; Rafuse, Matthew ; He, Xi</creatorcontrib><description>Differential privacy (DP) allows data analysts to query databases that contain users' sensitive information while providing a quantifiable privacy guarantee to users. Recent interactive DP systems such as APEx provide accuracy guarantees over the query responses, but fail to support a large number of queries with a limited total privacy budget, as they process incoming queries independently from past queries. We present an interactive, accuracy-aware DP query engine, CacheDP , which utilizes a differentially private cache of past responses, to answer the current workload at a lower privacy budget, while meeting strict accuracy guarantees. We integrate complex DP mechanisms with our structured cache, through novel cache-aware DP cost optimization. Our thorough evaluation illustrates that CacheDP can accurately answer various workload sequences, while lowering the privacy loss as compared to related work.</description><identifier>ISSN: 2150-8097</identifier><identifier>EISSN: 2150-8097</identifier><identifier>DOI: 10.14778/3574245.3574246</identifier><language>eng</language><ispartof>Proceedings of the VLDB Endowment, 2022-12, Vol.16 (4), p.574-586</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c196t-87774789a4495d305ce9ff423cd6bd45ce103aa6c021f311d6955263364f7bef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mazmudar, Miti</creatorcontrib><creatorcontrib>Humphries, Thomas</creatorcontrib><creatorcontrib>Liu, Jiaxiang</creatorcontrib><creatorcontrib>Rafuse, Matthew</creatorcontrib><creatorcontrib>He, Xi</creatorcontrib><title>Cache Me If You Can: Accuracy-Aware Inference Engine for Differentially Private Data Exploration</title><title>Proceedings of the VLDB Endowment</title><description>Differential privacy (DP) allows data analysts to query databases that contain users' sensitive information while providing a quantifiable privacy guarantee to users. Recent interactive DP systems such as APEx provide accuracy guarantees over the query responses, but fail to support a large number of queries with a limited total privacy budget, as they process incoming queries independently from past queries. We present an interactive, accuracy-aware DP query engine, CacheDP , which utilizes a differentially private cache of past responses, to answer the current workload at a lower privacy budget, while meeting strict accuracy guarantees. We integrate complex DP mechanisms with our structured cache, through novel cache-aware DP cost optimization. Our thorough evaluation illustrates that CacheDP can accurately answer various workload sequences, while lowering the privacy loss as compared to related work.</description><issn>2150-8097</issn><issn>2150-8097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNj7tOAzEQRS0EEiFQ0VDuD2yY8Yxn7BKteEQKokkKqpXjtQUICFpDwd-DyBZU597mSMeYC4QFsqq_JKds2S32lAMzs-ig9RD08N8-Nie1vgCIF_Qzc97F9JSb-9wsS_O4-2q6-H5qjkp8rfls4txsbq7X3V27erhddlerNmGQz9arKqsPkTm4gcClHEphS2mQ7cC_F4FilAQWCyEOEpyzQiRcdJsLzQ3svWnc1Trm0n-Mz29x_O4R-r-ofoqaKPQDspY7Uw</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Mazmudar, Miti</creator><creator>Humphries, Thomas</creator><creator>Liu, Jiaxiang</creator><creator>Rafuse, Matthew</creator><creator>He, Xi</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221201</creationdate><title>Cache Me If You Can</title><author>Mazmudar, Miti ; Humphries, Thomas ; Liu, Jiaxiang ; Rafuse, Matthew ; He, Xi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c196t-87774789a4495d305ce9ff423cd6bd45ce103aa6c021f311d6955263364f7bef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mazmudar, Miti</creatorcontrib><creatorcontrib>Humphries, Thomas</creatorcontrib><creatorcontrib>Liu, Jiaxiang</creatorcontrib><creatorcontrib>Rafuse, Matthew</creatorcontrib><creatorcontrib>He, Xi</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the VLDB Endowment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mazmudar, Miti</au><au>Humphries, Thomas</au><au>Liu, Jiaxiang</au><au>Rafuse, Matthew</au><au>He, Xi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cache Me If You Can: Accuracy-Aware Inference Engine for Differentially Private Data Exploration</atitle><jtitle>Proceedings of the VLDB Endowment</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>16</volume><issue>4</issue><spage>574</spage><epage>586</epage><pages>574-586</pages><issn>2150-8097</issn><eissn>2150-8097</eissn><abstract>Differential privacy (DP) allows data analysts to query databases that contain users' sensitive information while providing a quantifiable privacy guarantee to users. Recent interactive DP systems such as APEx provide accuracy guarantees over the query responses, but fail to support a large number of queries with a limited total privacy budget, as they process incoming queries independently from past queries. We present an interactive, accuracy-aware DP query engine, CacheDP , which utilizes a differentially private cache of past responses, to answer the current workload at a lower privacy budget, while meeting strict accuracy guarantees. We integrate complex DP mechanisms with our structured cache, through novel cache-aware DP cost optimization. Our thorough evaluation illustrates that CacheDP can accurately answer various workload sequences, while lowering the privacy loss as compared to related work.</abstract><doi>10.14778/3574245.3574246</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2150-8097
ispartof Proceedings of the VLDB Endowment, 2022-12, Vol.16 (4), p.574-586
issn 2150-8097
2150-8097
language eng
recordid cdi_crossref_primary_10_14778_3574245_3574246
source ACM Digital Library Complete
title Cache Me If You Can: Accuracy-Aware Inference Engine for Differentially Private Data Exploration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A26%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cache%20Me%20If%20You%20Can:%20Accuracy-Aware%20Inference%20Engine%20for%20Differentially%20Private%20Data%20Exploration&rft.jtitle=Proceedings%20of%20the%20VLDB%20Endowment&rft.au=Mazmudar,%20Miti&rft.date=2022-12-01&rft.volume=16&rft.issue=4&rft.spage=574&rft.epage=586&rft.pages=574-586&rft.issn=2150-8097&rft.eissn=2150-8097&rft_id=info:doi/10.14778/3574245.3574246&rft_dat=%3Ccrossref%3E10_14778_3574245_3574246%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true