Meta's next-generation realtime monitoring and analytics platform

Unlike traditional database systems where data and system availability are tied together, there is a wide class of systems targeting realtime monitoring and analytics over structured logs where these properties can be decoupled. In these systems, responsiveness and freshness of data are often more i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the VLDB Endowment 2022-08, Vol.15 (12), p.3522-3534
Hauptverfasser: Harizopoulos, Stavros, Hopper, Taylor, Mo, Morton, Chandrasekaran, Shyam Sundar, Chen, Tongguang, Cui, Yan, Ganesh, Nandini, Helmling, Gary, Pham, Hieu, Wong, Sebastian
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3534
container_issue 12
container_start_page 3522
container_title Proceedings of the VLDB Endowment
container_volume 15
creator Harizopoulos, Stavros
Hopper, Taylor
Mo, Morton
Chandrasekaran, Shyam Sundar
Chen, Tongguang
Cui, Yan
Ganesh, Nandini
Helmling, Gary
Pham, Hieu
Wong, Sebastian
description Unlike traditional database systems where data and system availability are tied together, there is a wide class of systems targeting realtime monitoring and analytics over structured logs where these properties can be decoupled. In these systems, responsiveness and freshness of data are often more important than perfectly complete answers. One such system is Meta's Scuba [2]. Historically, Scuba has favored system availability along with speed and freshness of results over data completeness and durability. While these choices allowed Scuba to grow from terabyte scale to petabyte scale and continue onboarding a variety of use cases, they also came at an operational cost of dealing with incomplete data and managing data loss. In this paper, we present the next generation of Scuba's architecture, codenamed Kraken , which decouples storage management from the query serving system and introduces a single, durable source of truth. This enables tangible improvements to system fault tolerance and query performance while still respecting tolerable bounds of client observed data freshness. We also describe the journey of how we deployed Kraken into full production as we gradually turned off the older system with no user-visible down time.
doi_str_mv 10.14778/3554821.3554841
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_14778_3554821_3554841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_14778_3554821_3554841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-df7e46426a6f62cdffc946c1739061ddbe035be084911b9c005223919feedcdf3</originalsourceid><addsrcrecordid>eNpNkDtPwzAUhS0EEqVlZ8zGlOJrO449VhUvqYiFzpFrX1dGiVPZHui_JyoZGM5jODrDR8gD0DWItlVPvGmEYrC-pIArsmDQ0FpR3V7_67fkLudvSqWSoBZk84HFPOYq4k-pjxgxmRLGWCU0fQkDVsMYQxlTiMfKRDfJ9OcSbK5OvSl-TMOK3HjTZ7yfc0n2L89f27d69_n6vt3sassEL7XzLQopmDTSS2ad91YLaaHlmkpw7oCUN5MpoQEO2lLaMMY1aI_opjlfEvr3a9OYc0LfnVIYTDp3QLsLgm5G0M0I-C-epU9L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Meta's next-generation realtime monitoring and analytics platform</title><source>ACM Digital Library</source><creator>Harizopoulos, Stavros ; Hopper, Taylor ; Mo, Morton ; Chandrasekaran, Shyam Sundar ; Chen, Tongguang ; Cui, Yan ; Ganesh, Nandini ; Helmling, Gary ; Pham, Hieu ; Wong, Sebastian</creator><creatorcontrib>Harizopoulos, Stavros ; Hopper, Taylor ; Mo, Morton ; Chandrasekaran, Shyam Sundar ; Chen, Tongguang ; Cui, Yan ; Ganesh, Nandini ; Helmling, Gary ; Pham, Hieu ; Wong, Sebastian</creatorcontrib><description>Unlike traditional database systems where data and system availability are tied together, there is a wide class of systems targeting realtime monitoring and analytics over structured logs where these properties can be decoupled. In these systems, responsiveness and freshness of data are often more important than perfectly complete answers. One such system is Meta's Scuba [2]. Historically, Scuba has favored system availability along with speed and freshness of results over data completeness and durability. While these choices allowed Scuba to grow from terabyte scale to petabyte scale and continue onboarding a variety of use cases, they also came at an operational cost of dealing with incomplete data and managing data loss. In this paper, we present the next generation of Scuba's architecture, codenamed Kraken , which decouples storage management from the query serving system and introduces a single, durable source of truth. This enables tangible improvements to system fault tolerance and query performance while still respecting tolerable bounds of client observed data freshness. We also describe the journey of how we deployed Kraken into full production as we gradually turned off the older system with no user-visible down time.</description><identifier>ISSN: 2150-8097</identifier><identifier>EISSN: 2150-8097</identifier><identifier>DOI: 10.14778/3554821.3554841</identifier><language>eng</language><ispartof>Proceedings of the VLDB Endowment, 2022-08, Vol.15 (12), p.3522-3534</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c243t-df7e46426a6f62cdffc946c1739061ddbe035be084911b9c005223919feedcdf3</citedby><cites>FETCH-LOGICAL-c243t-df7e46426a6f62cdffc946c1739061ddbe035be084911b9c005223919feedcdf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Harizopoulos, Stavros</creatorcontrib><creatorcontrib>Hopper, Taylor</creatorcontrib><creatorcontrib>Mo, Morton</creatorcontrib><creatorcontrib>Chandrasekaran, Shyam Sundar</creatorcontrib><creatorcontrib>Chen, Tongguang</creatorcontrib><creatorcontrib>Cui, Yan</creatorcontrib><creatorcontrib>Ganesh, Nandini</creatorcontrib><creatorcontrib>Helmling, Gary</creatorcontrib><creatorcontrib>Pham, Hieu</creatorcontrib><creatorcontrib>Wong, Sebastian</creatorcontrib><title>Meta's next-generation realtime monitoring and analytics platform</title><title>Proceedings of the VLDB Endowment</title><description>Unlike traditional database systems where data and system availability are tied together, there is a wide class of systems targeting realtime monitoring and analytics over structured logs where these properties can be decoupled. In these systems, responsiveness and freshness of data are often more important than perfectly complete answers. One such system is Meta's Scuba [2]. Historically, Scuba has favored system availability along with speed and freshness of results over data completeness and durability. While these choices allowed Scuba to grow from terabyte scale to petabyte scale and continue onboarding a variety of use cases, they also came at an operational cost of dealing with incomplete data and managing data loss. In this paper, we present the next generation of Scuba's architecture, codenamed Kraken , which decouples storage management from the query serving system and introduces a single, durable source of truth. This enables tangible improvements to system fault tolerance and query performance while still respecting tolerable bounds of client observed data freshness. We also describe the journey of how we deployed Kraken into full production as we gradually turned off the older system with no user-visible down time.</description><issn>2150-8097</issn><issn>2150-8097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkDtPwzAUhS0EEqVlZ8zGlOJrO449VhUvqYiFzpFrX1dGiVPZHui_JyoZGM5jODrDR8gD0DWItlVPvGmEYrC-pIArsmDQ0FpR3V7_67fkLudvSqWSoBZk84HFPOYq4k-pjxgxmRLGWCU0fQkDVsMYQxlTiMfKRDfJ9OcSbK5OvSl-TMOK3HjTZ7yfc0n2L89f27d69_n6vt3sassEL7XzLQopmDTSS2ad91YLaaHlmkpw7oCUN5MpoQEO2lLaMMY1aI_opjlfEvr3a9OYc0LfnVIYTDp3QLsLgm5G0M0I-C-epU9L</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Harizopoulos, Stavros</creator><creator>Hopper, Taylor</creator><creator>Mo, Morton</creator><creator>Chandrasekaran, Shyam Sundar</creator><creator>Chen, Tongguang</creator><creator>Cui, Yan</creator><creator>Ganesh, Nandini</creator><creator>Helmling, Gary</creator><creator>Pham, Hieu</creator><creator>Wong, Sebastian</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220801</creationdate><title>Meta's next-generation realtime monitoring and analytics platform</title><author>Harizopoulos, Stavros ; Hopper, Taylor ; Mo, Morton ; Chandrasekaran, Shyam Sundar ; Chen, Tongguang ; Cui, Yan ; Ganesh, Nandini ; Helmling, Gary ; Pham, Hieu ; Wong, Sebastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-df7e46426a6f62cdffc946c1739061ddbe035be084911b9c005223919feedcdf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harizopoulos, Stavros</creatorcontrib><creatorcontrib>Hopper, Taylor</creatorcontrib><creatorcontrib>Mo, Morton</creatorcontrib><creatorcontrib>Chandrasekaran, Shyam Sundar</creatorcontrib><creatorcontrib>Chen, Tongguang</creatorcontrib><creatorcontrib>Cui, Yan</creatorcontrib><creatorcontrib>Ganesh, Nandini</creatorcontrib><creatorcontrib>Helmling, Gary</creatorcontrib><creatorcontrib>Pham, Hieu</creatorcontrib><creatorcontrib>Wong, Sebastian</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the VLDB Endowment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harizopoulos, Stavros</au><au>Hopper, Taylor</au><au>Mo, Morton</au><au>Chandrasekaran, Shyam Sundar</au><au>Chen, Tongguang</au><au>Cui, Yan</au><au>Ganesh, Nandini</au><au>Helmling, Gary</au><au>Pham, Hieu</au><au>Wong, Sebastian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Meta's next-generation realtime monitoring and analytics platform</atitle><jtitle>Proceedings of the VLDB Endowment</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>15</volume><issue>12</issue><spage>3522</spage><epage>3534</epage><pages>3522-3534</pages><issn>2150-8097</issn><eissn>2150-8097</eissn><abstract>Unlike traditional database systems where data and system availability are tied together, there is a wide class of systems targeting realtime monitoring and analytics over structured logs where these properties can be decoupled. In these systems, responsiveness and freshness of data are often more important than perfectly complete answers. One such system is Meta's Scuba [2]. Historically, Scuba has favored system availability along with speed and freshness of results over data completeness and durability. While these choices allowed Scuba to grow from terabyte scale to petabyte scale and continue onboarding a variety of use cases, they also came at an operational cost of dealing with incomplete data and managing data loss. In this paper, we present the next generation of Scuba's architecture, codenamed Kraken , which decouples storage management from the query serving system and introduces a single, durable source of truth. This enables tangible improvements to system fault tolerance and query performance while still respecting tolerable bounds of client observed data freshness. We also describe the journey of how we deployed Kraken into full production as we gradually turned off the older system with no user-visible down time.</abstract><doi>10.14778/3554821.3554841</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2150-8097
ispartof Proceedings of the VLDB Endowment, 2022-08, Vol.15 (12), p.3522-3534
issn 2150-8097
2150-8097
language eng
recordid cdi_crossref_primary_10_14778_3554821_3554841
source ACM Digital Library
title Meta's next-generation realtime monitoring and analytics platform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A52%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Meta's%20next-generation%20realtime%20monitoring%20and%20analytics%20platform&rft.jtitle=Proceedings%20of%20the%20VLDB%20Endowment&rft.au=Harizopoulos,%20Stavros&rft.date=2022-08-01&rft.volume=15&rft.issue=12&rft.spage=3522&rft.epage=3534&rft.pages=3522-3534&rft.issn=2150-8097&rft.eissn=2150-8097&rft_id=info:doi/10.14778/3554821.3554841&rft_dat=%3Ccrossref%3E10_14778_3554821_3554841%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true