BABOONS: black-box optimization of data summaries in natural language

BABOONS (BlAck BOx Optimization of Natural language data Summaries) optimizes text data summaries for an arbitrary, user-defined utility function. Primarily, it targets scenarios in which utility is evaluated via large language models. Users describe their utility function in natural language or pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the VLDB Endowment 2022-07, Vol.15 (11), p.2980-2993
1. Verfasser: Trummer, Immanuel
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2993
container_issue 11
container_start_page 2980
container_title Proceedings of the VLDB Endowment
container_volume 15
creator Trummer, Immanuel
description BABOONS (BlAck BOx Optimization of Natural language data Summaries) optimizes text data summaries for an arbitrary, user-defined utility function. Primarily, it targets scenarios in which utility is evaluated via large language models. Users describe their utility function in natural language or provide a model, trained to score text summaries in a specific domain. BABOONS uses reinforcement learning to explore the space of possible descriptions. In each iteration, BABOONS generates summaries and evaluates their utility. To reduce data processing overheads during summary generation, BABOONS uses a proactive processing strategy that dynamically merges current with likely future queries for efficient processing. Also, BABOONS supports scenario-specific sampling and batch processing strategies. These mechanisms allow to scale processing to large data and item sets. The experiments show that BABOONS scales significantly better than baselines. Also, they show that summaries generated by BABOONS receive higher average grades from users in a large survey.
doi_str_mv 10.14778/3551793.3551846
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_14778_3551793_3551846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_14778_3551793_3551846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c196t-f27ab8b545e20a1f44c4d60ece4713eda570c4581575e2096f87b53d0881928f3</originalsourceid><addsrcrecordid>eNpNj0FPAjEQRhsCQQTv_ImFmW2nMz0CETEh7kE9N91um2g0kq0X_j1B9uDpfYcvL3lKLRFWaJhlrYmQnV5dKcaO1KxGgkrA8fjfvlP3pXwCWLEoMzXdbrZN8_K6UJMcvkp6GDhX7_vHt92hOjZPz7vNsYro7G-Vaw6ttGQo1RAwGxNNZyHFZBh16gIxREOCxNeHs1m4Jd2BCLpasp4ruHlj_1NKn7I_9R_foT97BP8X4ocQP4ToC5yRN0o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>BABOONS: black-box optimization of data summaries in natural language</title><source>ACM Digital Library Complete</source><creator>Trummer, Immanuel</creator><creatorcontrib>Trummer, Immanuel</creatorcontrib><description>BABOONS (BlAck BOx Optimization of Natural language data Summaries) optimizes text data summaries for an arbitrary, user-defined utility function. Primarily, it targets scenarios in which utility is evaluated via large language models. Users describe their utility function in natural language or provide a model, trained to score text summaries in a specific domain. BABOONS uses reinforcement learning to explore the space of possible descriptions. In each iteration, BABOONS generates summaries and evaluates their utility. To reduce data processing overheads during summary generation, BABOONS uses a proactive processing strategy that dynamically merges current with likely future queries for efficient processing. Also, BABOONS supports scenario-specific sampling and batch processing strategies. These mechanisms allow to scale processing to large data and item sets. The experiments show that BABOONS scales significantly better than baselines. Also, they show that summaries generated by BABOONS receive higher average grades from users in a large survey.</description><identifier>ISSN: 2150-8097</identifier><identifier>EISSN: 2150-8097</identifier><identifier>DOI: 10.14778/3551793.3551846</identifier><language>eng</language><ispartof>Proceedings of the VLDB Endowment, 2022-07, Vol.15 (11), p.2980-2993</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c196t-f27ab8b545e20a1f44c4d60ece4713eda570c4581575e2096f87b53d0881928f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Trummer, Immanuel</creatorcontrib><title>BABOONS: black-box optimization of data summaries in natural language</title><title>Proceedings of the VLDB Endowment</title><description>BABOONS (BlAck BOx Optimization of Natural language data Summaries) optimizes text data summaries for an arbitrary, user-defined utility function. Primarily, it targets scenarios in which utility is evaluated via large language models. Users describe their utility function in natural language or provide a model, trained to score text summaries in a specific domain. BABOONS uses reinforcement learning to explore the space of possible descriptions. In each iteration, BABOONS generates summaries and evaluates their utility. To reduce data processing overheads during summary generation, BABOONS uses a proactive processing strategy that dynamically merges current with likely future queries for efficient processing. Also, BABOONS supports scenario-specific sampling and batch processing strategies. These mechanisms allow to scale processing to large data and item sets. The experiments show that BABOONS scales significantly better than baselines. Also, they show that summaries generated by BABOONS receive higher average grades from users in a large survey.</description><issn>2150-8097</issn><issn>2150-8097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNj0FPAjEQRhsCQQTv_ImFmW2nMz0CETEh7kE9N91um2g0kq0X_j1B9uDpfYcvL3lKLRFWaJhlrYmQnV5dKcaO1KxGgkrA8fjfvlP3pXwCWLEoMzXdbrZN8_K6UJMcvkp6GDhX7_vHt92hOjZPz7vNsYro7G-Vaw6ttGQo1RAwGxNNZyHFZBh16gIxREOCxNeHs1m4Jd2BCLpasp4ruHlj_1NKn7I_9R_foT97BP8X4ocQP4ToC5yRN0o</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Trummer, Immanuel</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220701</creationdate><title>BABOONS</title><author>Trummer, Immanuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c196t-f27ab8b545e20a1f44c4d60ece4713eda570c4581575e2096f87b53d0881928f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trummer, Immanuel</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the VLDB Endowment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trummer, Immanuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BABOONS: black-box optimization of data summaries in natural language</atitle><jtitle>Proceedings of the VLDB Endowment</jtitle><date>2022-07-01</date><risdate>2022</risdate><volume>15</volume><issue>11</issue><spage>2980</spage><epage>2993</epage><pages>2980-2993</pages><issn>2150-8097</issn><eissn>2150-8097</eissn><abstract>BABOONS (BlAck BOx Optimization of Natural language data Summaries) optimizes text data summaries for an arbitrary, user-defined utility function. Primarily, it targets scenarios in which utility is evaluated via large language models. Users describe their utility function in natural language or provide a model, trained to score text summaries in a specific domain. BABOONS uses reinforcement learning to explore the space of possible descriptions. In each iteration, BABOONS generates summaries and evaluates their utility. To reduce data processing overheads during summary generation, BABOONS uses a proactive processing strategy that dynamically merges current with likely future queries for efficient processing. Also, BABOONS supports scenario-specific sampling and batch processing strategies. These mechanisms allow to scale processing to large data and item sets. The experiments show that BABOONS scales significantly better than baselines. Also, they show that summaries generated by BABOONS receive higher average grades from users in a large survey.</abstract><doi>10.14778/3551793.3551846</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2150-8097
ispartof Proceedings of the VLDB Endowment, 2022-07, Vol.15 (11), p.2980-2993
issn 2150-8097
2150-8097
language eng
recordid cdi_crossref_primary_10_14778_3551793_3551846
source ACM Digital Library Complete
title BABOONS: black-box optimization of data summaries in natural language
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A40%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BABOONS:%20black-box%20optimization%20of%20data%20summaries%20in%20natural%20language&rft.jtitle=Proceedings%20of%20the%20VLDB%20Endowment&rft.au=Trummer,%20Immanuel&rft.date=2022-07-01&rft.volume=15&rft.issue=11&rft.spage=2980&rft.epage=2993&rft.pages=2980-2993&rft.issn=2150-8097&rft.eissn=2150-8097&rft_id=info:doi/10.14778/3551793.3551846&rft_dat=%3Ccrossref%3E10_14778_3551793_3551846%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true