Taurus: lightweight parallel logging for in-memory database management systems

Existing single-stream logging schemes are unsuitable for in-memory database management systems (DBMSs) as the single log is often a performance bottleneck. To overcome this problem, we present Taurus, an efficient parallel logging scheme that uses multiple log streams, and is compatible with both d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the VLDB Endowment 2020-10, Vol.14 (2), p.189-201
Hauptverfasser: Xia, Yu, Yu, Xiangyao, Pavlo, Andrew, Devadas, Srinivas
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 201
container_issue 2
container_start_page 189
container_title Proceedings of the VLDB Endowment
container_volume 14
creator Xia, Yu
Yu, Xiangyao
Pavlo, Andrew
Devadas, Srinivas
description Existing single-stream logging schemes are unsuitable for in-memory database management systems (DBMSs) as the single log is often a performance bottleneck. To overcome this problem, we present Taurus, an efficient parallel logging scheme that uses multiple log streams, and is compatible with both data and command logging. Taurus tracks and encodes transaction dependencies using a vector of log sequence numbers (LSNs). These vectors ensure that the dependencies are fully captured in logging and correctly enforced in recovery. Our experimental evaluation with an in-memory DBMS shows that Taurus's parallel logging achieves up to 9.9X and 2.9X speedups over single-streamed data logging and command logging, respectively. It also enables the DBMS to recover up to 22.9X and 75.6X faster than these baselines for data and command logging, respectively. We also compare Taurus with two state-of-the-art parallel logging schemes and show that the DBMS achieves up to 2.8X better performance on NVMe drives and 9.2X on HDDs.
doi_str_mv 10.14778/3425879.3425889
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_14778_3425879_3425889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_14778_3425879_3425889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c196t-5983d74be5acdcf05cbdfcc78ddb1c1e879bf1f29bb67f54cdf9436a5cf455603</originalsourceid><addsrcrecordid>eNpNj81OQjEQRhsiRgT3vsTFmdtOf5aEKJiQuMF1007vJBoNpoUFb4_Bu3B1vtV3cpR6RFiicc4_adOTd2F5pQ8TNeuRoPMQ3M2_fafuW_sEsN6in6nbfTrVU1uoqaSvNjyMnKv3l-f9etvt3jav69WuYwz22FHwujiTB0pcWIA4F2F2vpSMjMOvPwtKH3K2TshwkWC0TcRiiCzouYK_X66H1uog8ad-fKd6jgjx2hHHjjh26AuKBTnO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Taurus: lightweight parallel logging for in-memory database management systems</title><source>ACM Digital Library Complete</source><creator>Xia, Yu ; Yu, Xiangyao ; Pavlo, Andrew ; Devadas, Srinivas</creator><creatorcontrib>Xia, Yu ; Yu, Xiangyao ; Pavlo, Andrew ; Devadas, Srinivas</creatorcontrib><description>Existing single-stream logging schemes are unsuitable for in-memory database management systems (DBMSs) as the single log is often a performance bottleneck. To overcome this problem, we present Taurus, an efficient parallel logging scheme that uses multiple log streams, and is compatible with both data and command logging. Taurus tracks and encodes transaction dependencies using a vector of log sequence numbers (LSNs). These vectors ensure that the dependencies are fully captured in logging and correctly enforced in recovery. Our experimental evaluation with an in-memory DBMS shows that Taurus's parallel logging achieves up to 9.9X and 2.9X speedups over single-streamed data logging and command logging, respectively. It also enables the DBMS to recover up to 22.9X and 75.6X faster than these baselines for data and command logging, respectively. We also compare Taurus with two state-of-the-art parallel logging schemes and show that the DBMS achieves up to 2.8X better performance on NVMe drives and 9.2X on HDDs.</description><identifier>ISSN: 2150-8097</identifier><identifier>EISSN: 2150-8097</identifier><identifier>DOI: 10.14778/3425879.3425889</identifier><language>eng</language><ispartof>Proceedings of the VLDB Endowment, 2020-10, Vol.14 (2), p.189-201</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c196t-5983d74be5acdcf05cbdfcc78ddb1c1e879bf1f29bb67f54cdf9436a5cf455603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xia, Yu</creatorcontrib><creatorcontrib>Yu, Xiangyao</creatorcontrib><creatorcontrib>Pavlo, Andrew</creatorcontrib><creatorcontrib>Devadas, Srinivas</creatorcontrib><title>Taurus: lightweight parallel logging for in-memory database management systems</title><title>Proceedings of the VLDB Endowment</title><description>Existing single-stream logging schemes are unsuitable for in-memory database management systems (DBMSs) as the single log is often a performance bottleneck. To overcome this problem, we present Taurus, an efficient parallel logging scheme that uses multiple log streams, and is compatible with both data and command logging. Taurus tracks and encodes transaction dependencies using a vector of log sequence numbers (LSNs). These vectors ensure that the dependencies are fully captured in logging and correctly enforced in recovery. Our experimental evaluation with an in-memory DBMS shows that Taurus's parallel logging achieves up to 9.9X and 2.9X speedups over single-streamed data logging and command logging, respectively. It also enables the DBMS to recover up to 22.9X and 75.6X faster than these baselines for data and command logging, respectively. We also compare Taurus with two state-of-the-art parallel logging schemes and show that the DBMS achieves up to 2.8X better performance on NVMe drives and 9.2X on HDDs.</description><issn>2150-8097</issn><issn>2150-8097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNj81OQjEQRhsiRgT3vsTFmdtOf5aEKJiQuMF1007vJBoNpoUFb4_Bu3B1vtV3cpR6RFiicc4_adOTd2F5pQ8TNeuRoPMQ3M2_fafuW_sEsN6in6nbfTrVU1uoqaSvNjyMnKv3l-f9etvt3jav69WuYwz22FHwujiTB0pcWIA4F2F2vpSMjMOvPwtKH3K2TshwkWC0TcRiiCzouYK_X66H1uog8ad-fKd6jgjx2hHHjjh26AuKBTnO</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Xia, Yu</creator><creator>Yu, Xiangyao</creator><creator>Pavlo, Andrew</creator><creator>Devadas, Srinivas</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201001</creationdate><title>Taurus</title><author>Xia, Yu ; Yu, Xiangyao ; Pavlo, Andrew ; Devadas, Srinivas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c196t-5983d74be5acdcf05cbdfcc78ddb1c1e879bf1f29bb67f54cdf9436a5cf455603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Yu</creatorcontrib><creatorcontrib>Yu, Xiangyao</creatorcontrib><creatorcontrib>Pavlo, Andrew</creatorcontrib><creatorcontrib>Devadas, Srinivas</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the VLDB Endowment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Yu</au><au>Yu, Xiangyao</au><au>Pavlo, Andrew</au><au>Devadas, Srinivas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Taurus: lightweight parallel logging for in-memory database management systems</atitle><jtitle>Proceedings of the VLDB Endowment</jtitle><date>2020-10-01</date><risdate>2020</risdate><volume>14</volume><issue>2</issue><spage>189</spage><epage>201</epage><pages>189-201</pages><issn>2150-8097</issn><eissn>2150-8097</eissn><abstract>Existing single-stream logging schemes are unsuitable for in-memory database management systems (DBMSs) as the single log is often a performance bottleneck. To overcome this problem, we present Taurus, an efficient parallel logging scheme that uses multiple log streams, and is compatible with both data and command logging. Taurus tracks and encodes transaction dependencies using a vector of log sequence numbers (LSNs). These vectors ensure that the dependencies are fully captured in logging and correctly enforced in recovery. Our experimental evaluation with an in-memory DBMS shows that Taurus's parallel logging achieves up to 9.9X and 2.9X speedups over single-streamed data logging and command logging, respectively. It also enables the DBMS to recover up to 22.9X and 75.6X faster than these baselines for data and command logging, respectively. We also compare Taurus with two state-of-the-art parallel logging schemes and show that the DBMS achieves up to 2.8X better performance on NVMe drives and 9.2X on HDDs.</abstract><doi>10.14778/3425879.3425889</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2150-8097
ispartof Proceedings of the VLDB Endowment, 2020-10, Vol.14 (2), p.189-201
issn 2150-8097
2150-8097
language eng
recordid cdi_crossref_primary_10_14778_3425879_3425889
source ACM Digital Library Complete
title Taurus: lightweight parallel logging for in-memory database management systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T08%3A11%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Taurus:%20lightweight%20parallel%20logging%20for%20in-memory%20database%20management%20systems&rft.jtitle=Proceedings%20of%20the%20VLDB%20Endowment&rft.au=Xia,%20Yu&rft.date=2020-10-01&rft.volume=14&rft.issue=2&rft.spage=189&rft.epage=201&rft.pages=189-201&rft.issn=2150-8097&rft.eissn=2150-8097&rft_id=info:doi/10.14778/3425879.3425889&rft_dat=%3Ccrossref%3E10_14778_3425879_3425889%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true