Profiling, what-if analysis, and cost-based optimization of MapReduce programs

MapReduce has emerged as a viable competitor to database systems in big data analytics. MapReduce programs are being written for a wide variety of application domains including business data processing, text analysis, natural language processing, Web graph and social network analysis, and computatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the VLDB Endowment 2011-08, Vol.4 (11), p.1111-1122
Hauptverfasser: Herodotou, Herodotos, Babu, Shivnath
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:MapReduce has emerged as a viable competitor to database systems in big data analytics. MapReduce programs are being written for a wide variety of application domains including business data processing, text analysis, natural language processing, Web graph and social network analysis, and computational science. However, MapReduce systems lack a feature that has been key to the historical success of database systems, namely, cost-based optimization. A major challenge here is that, to the MapReduce system, a program consists of black-box map and reduce functions written in some programming language like C++, Java, Python, or Ruby. We introduce, to our knowledge, the first Cost-based Optimizer for simple to arbitrarily complex MapReduce programs. We focus on the optimization opportunities presented by the large space of configuration parameters for these programs. We also introduce a Profiler to collect detailed statistical information from unmodified MapReduce programs, and a What-if Engine for fine-grained cost estimation. All components have been prototyped for the popular Hadoop MapReduce system. The effectiveness of each component is demonstrated through a comprehensive evaluation using representative MapReduce programs from various application domains.
ISSN:2150-8097
2150-8097
DOI:10.14778/3402707.3402746