Linking temporal records

Many data sets contain temporal records over a long period of time; each record is associated with a time stamp and describes some aspects of a real-world entity at that particular time ( e.g. , author information in DBLP). In such cases, we often wish to identify records that describe the same enti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the VLDB Endowment 2011-08, Vol.4 (11), p.956-967
Hauptverfasser: Li, Pei, Dong, Xin Luna, Maurino, Andrea, Srivastava, Divesh
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 967
container_issue 11
container_start_page 956
container_title Proceedings of the VLDB Endowment
container_volume 4
creator Li, Pei
Dong, Xin Luna
Maurino, Andrea
Srivastava, Divesh
description Many data sets contain temporal records over a long period of time; each record is associated with a time stamp and describes some aspects of a real-world entity at that particular time ( e.g. , author information in DBLP). In such cases, we often wish to identify records that describe the same entity over time and so be able to enable interesting longitudinal data analysis. However, existing record linkage techniques ignore the temporal information and can fall short for temporal data. This paper studies linking temporal records. First, we apply time decay to capture the effect of elapsed time on entity value evolution. Second, instead of comparing each pair of records locally, we propose clustering methods that consider time order of the records and make global decisions. Experimental results show that our algorithms significantly outperform traditional linkage methods on various temporal data sets.
doi_str_mv 10.14778/3402707.3402733
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_14778_3402707_3402733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_14778_3402707_3402733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-6d875bfc899ec9ef848aa5e2eefe8a23c9f6cc6f9d4fc33e01c8e7611f434e723</originalsourceid><addsrcrecordid>eNpNz01LAzEQxvEgFqyt9x77BbZOMtlkcpTiS2HBi55DnJ3IatstSS9-e6HuwdP_OT3wU2qlYaOt93SPFowHv7kU8UrNjW6hIQj--t--Ube1fgE4cprmatUNx-_h-Lk-y-E0lrRfF-Gx9HWpZjntq9xNXaj3p8e37UvTvT7vtg9dw8biuXE9-fYjM4UgHCSTpZRaMSJZKBnkkB2zy6G3mREFNJN4p3W2aMUbXCj4--Uy1lokx1MZDqn8RA3xIouTLE4y_AXDS0Av</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Linking temporal records</title><source>ACM Digital Library</source><creator>Li, Pei ; Dong, Xin Luna ; Maurino, Andrea ; Srivastava, Divesh</creator><creatorcontrib>Li, Pei ; Dong, Xin Luna ; Maurino, Andrea ; Srivastava, Divesh</creatorcontrib><description>Many data sets contain temporal records over a long period of time; each record is associated with a time stamp and describes some aspects of a real-world entity at that particular time ( e.g. , author information in DBLP). In such cases, we often wish to identify records that describe the same entity over time and so be able to enable interesting longitudinal data analysis. However, existing record linkage techniques ignore the temporal information and can fall short for temporal data. This paper studies linking temporal records. First, we apply time decay to capture the effect of elapsed time on entity value evolution. Second, instead of comparing each pair of records locally, we propose clustering methods that consider time order of the records and make global decisions. Experimental results show that our algorithms significantly outperform traditional linkage methods on various temporal data sets.</description><identifier>ISSN: 2150-8097</identifier><identifier>EISSN: 2150-8097</identifier><identifier>DOI: 10.14778/3402707.3402733</identifier><language>eng</language><ispartof>Proceedings of the VLDB Endowment, 2011-08, Vol.4 (11), p.956-967</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c243t-6d875bfc899ec9ef848aa5e2eefe8a23c9f6cc6f9d4fc33e01c8e7611f434e723</citedby><cites>FETCH-LOGICAL-c243t-6d875bfc899ec9ef848aa5e2eefe8a23c9f6cc6f9d4fc33e01c8e7611f434e723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Pei</creatorcontrib><creatorcontrib>Dong, Xin Luna</creatorcontrib><creatorcontrib>Maurino, Andrea</creatorcontrib><creatorcontrib>Srivastava, Divesh</creatorcontrib><title>Linking temporal records</title><title>Proceedings of the VLDB Endowment</title><description>Many data sets contain temporal records over a long period of time; each record is associated with a time stamp and describes some aspects of a real-world entity at that particular time ( e.g. , author information in DBLP). In such cases, we often wish to identify records that describe the same entity over time and so be able to enable interesting longitudinal data analysis. However, existing record linkage techniques ignore the temporal information and can fall short for temporal data. This paper studies linking temporal records. First, we apply time decay to capture the effect of elapsed time on entity value evolution. Second, instead of comparing each pair of records locally, we propose clustering methods that consider time order of the records and make global decisions. Experimental results show that our algorithms significantly outperform traditional linkage methods on various temporal data sets.</description><issn>2150-8097</issn><issn>2150-8097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpNz01LAzEQxvEgFqyt9x77BbZOMtlkcpTiS2HBi55DnJ3IatstSS9-e6HuwdP_OT3wU2qlYaOt93SPFowHv7kU8UrNjW6hIQj--t--Ube1fgE4cprmatUNx-_h-Lk-y-E0lrRfF-Gx9HWpZjntq9xNXaj3p8e37UvTvT7vtg9dw8biuXE9-fYjM4UgHCSTpZRaMSJZKBnkkB2zy6G3mREFNJN4p3W2aMUbXCj4--Uy1lokx1MZDqn8RA3xIouTLE4y_AXDS0Av</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Li, Pei</creator><creator>Dong, Xin Luna</creator><creator>Maurino, Andrea</creator><creator>Srivastava, Divesh</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110801</creationdate><title>Linking temporal records</title><author>Li, Pei ; Dong, Xin Luna ; Maurino, Andrea ; Srivastava, Divesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-6d875bfc899ec9ef848aa5e2eefe8a23c9f6cc6f9d4fc33e01c8e7611f434e723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Pei</creatorcontrib><creatorcontrib>Dong, Xin Luna</creatorcontrib><creatorcontrib>Maurino, Andrea</creatorcontrib><creatorcontrib>Srivastava, Divesh</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the VLDB Endowment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Pei</au><au>Dong, Xin Luna</au><au>Maurino, Andrea</au><au>Srivastava, Divesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linking temporal records</atitle><jtitle>Proceedings of the VLDB Endowment</jtitle><date>2011-08-01</date><risdate>2011</risdate><volume>4</volume><issue>11</issue><spage>956</spage><epage>967</epage><pages>956-967</pages><issn>2150-8097</issn><eissn>2150-8097</eissn><abstract>Many data sets contain temporal records over a long period of time; each record is associated with a time stamp and describes some aspects of a real-world entity at that particular time ( e.g. , author information in DBLP). In such cases, we often wish to identify records that describe the same entity over time and so be able to enable interesting longitudinal data analysis. However, existing record linkage techniques ignore the temporal information and can fall short for temporal data. This paper studies linking temporal records. First, we apply time decay to capture the effect of elapsed time on entity value evolution. Second, instead of comparing each pair of records locally, we propose clustering methods that consider time order of the records and make global decisions. Experimental results show that our algorithms significantly outperform traditional linkage methods on various temporal data sets.</abstract><doi>10.14778/3402707.3402733</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2150-8097
ispartof Proceedings of the VLDB Endowment, 2011-08, Vol.4 (11), p.956-967
issn 2150-8097
2150-8097
language eng
recordid cdi_crossref_primary_10_14778_3402707_3402733
source ACM Digital Library
title Linking temporal records
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T23%3A06%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linking%20temporal%20records&rft.jtitle=Proceedings%20of%20the%20VLDB%20Endowment&rft.au=Li,%20Pei&rft.date=2011-08-01&rft.volume=4&rft.issue=11&rft.spage=956&rft.epage=967&rft.pages=956-967&rft.issn=2150-8097&rft.eissn=2150-8097&rft_id=info:doi/10.14778/3402707.3402733&rft_dat=%3Ccrossref%3E10_14778_3402707_3402733%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true