Local algorithms for hierarchical dense subgraph discovery

Finding the dense regions of a graph and relations among them is a fundamental problem in network analysis. Core and truss decompositions reveal dense subgraphs with hierarchical relations. The incremental nature of algorithms for computing these decompositions and the need for global information at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the VLDB Endowment 2018-09, Vol.12 (1), p.43-56
Hauptverfasser: Sariyüce, Ahmet Erdem, Seshadhri, C., Pinar, Ali
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 56
container_issue 1
container_start_page 43
container_title Proceedings of the VLDB Endowment
container_volume 12
creator Sariyüce, Ahmet Erdem
Seshadhri, C.
Pinar, Ali
description Finding the dense regions of a graph and relations among them is a fundamental problem in network analysis. Core and truss decompositions reveal dense subgraphs with hierarchical relations. The incremental nature of algorithms for computing these decompositions and the need for global information at each step of the algorithm hinders scalable parallelization and approximations since the densest regions are not revealed until the end. In a previous work, Lu et al. proposed to iteratively compute the h -indices of neighbor vertex degrees to obtain the core numbers and prove that the convergence is obtained after a finite number of iterations. This work generalizes the iterative h -index computation for truss decomposition as well as nucleus decomposition which leverages higher-order structures to generalize core and truss decompositions. In addition, we prove convergence bounds on the number of iterations. We present a framework of local algorithms to obtain the core, truss, and nucleus decompositions. Our algorithms are local, parallel, offer high scalability, and enable approximations to explore time and quality trade-offs. Our shared-memory implementation verifies the efficiency, scalability, and effectiveness of our local algorithms on real-world networks.
doi_str_mv 10.14778/3275536.3275540
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_14778_3275536_3275540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_14778_3275536_3275540</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-fab1dd29b3db9448267be71e51edeea0ef62230aec7e6fb652500cb7bcd3c333</originalsourceid><addsrcrecordid>eNpNj0tLw0AURgdRsFb3LvMHUu-8E3dS1AoBN90P87jTRFJT7lSh_16sWbg6H3xw4DB2z2HFlbXNgxRWa2lWZyq4YAvBNdQNtPby375mN6V8AJjG8GbBHrsp-rHy426i4djvS5UnqvoByVPsh98v4WfBqnyFHflDX6WhxOkb6XTLrrIfC97NXLLty_N2vam799e39VNXR6Hksc4-8JREG2QKrVKNMDag5ag5JkQPmI0QEjxGiyYHo4UGiMGGmGSUUi4Z_GkjTaUQZnegYe_p5Di4c7qb092cLn8ABJxNDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Local algorithms for hierarchical dense subgraph discovery</title><source>ACM Digital Library</source><creator>Sariyüce, Ahmet Erdem ; Seshadhri, C. ; Pinar, Ali</creator><creatorcontrib>Sariyüce, Ahmet Erdem ; Seshadhri, C. ; Pinar, Ali</creatorcontrib><description>Finding the dense regions of a graph and relations among them is a fundamental problem in network analysis. Core and truss decompositions reveal dense subgraphs with hierarchical relations. The incremental nature of algorithms for computing these decompositions and the need for global information at each step of the algorithm hinders scalable parallelization and approximations since the densest regions are not revealed until the end. In a previous work, Lu et al. proposed to iteratively compute the h -indices of neighbor vertex degrees to obtain the core numbers and prove that the convergence is obtained after a finite number of iterations. This work generalizes the iterative h -index computation for truss decomposition as well as nucleus decomposition which leverages higher-order structures to generalize core and truss decompositions. In addition, we prove convergence bounds on the number of iterations. We present a framework of local algorithms to obtain the core, truss, and nucleus decompositions. Our algorithms are local, parallel, offer high scalability, and enable approximations to explore time and quality trade-offs. Our shared-memory implementation verifies the efficiency, scalability, and effectiveness of our local algorithms on real-world networks.</description><identifier>ISSN: 2150-8097</identifier><identifier>EISSN: 2150-8097</identifier><identifier>DOI: 10.14778/3275536.3275540</identifier><language>eng</language><ispartof>Proceedings of the VLDB Endowment, 2018-09, Vol.12 (1), p.43-56</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c243t-fab1dd29b3db9448267be71e51edeea0ef62230aec7e6fb652500cb7bcd3c333</citedby><cites>FETCH-LOGICAL-c243t-fab1dd29b3db9448267be71e51edeea0ef62230aec7e6fb652500cb7bcd3c333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Sariyüce, Ahmet Erdem</creatorcontrib><creatorcontrib>Seshadhri, C.</creatorcontrib><creatorcontrib>Pinar, Ali</creatorcontrib><title>Local algorithms for hierarchical dense subgraph discovery</title><title>Proceedings of the VLDB Endowment</title><description>Finding the dense regions of a graph and relations among them is a fundamental problem in network analysis. Core and truss decompositions reveal dense subgraphs with hierarchical relations. The incremental nature of algorithms for computing these decompositions and the need for global information at each step of the algorithm hinders scalable parallelization and approximations since the densest regions are not revealed until the end. In a previous work, Lu et al. proposed to iteratively compute the h -indices of neighbor vertex degrees to obtain the core numbers and prove that the convergence is obtained after a finite number of iterations. This work generalizes the iterative h -index computation for truss decomposition as well as nucleus decomposition which leverages higher-order structures to generalize core and truss decompositions. In addition, we prove convergence bounds on the number of iterations. We present a framework of local algorithms to obtain the core, truss, and nucleus decompositions. Our algorithms are local, parallel, offer high scalability, and enable approximations to explore time and quality trade-offs. Our shared-memory implementation verifies the efficiency, scalability, and effectiveness of our local algorithms on real-world networks.</description><issn>2150-8097</issn><issn>2150-8097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNj0tLw0AURgdRsFb3LvMHUu-8E3dS1AoBN90P87jTRFJT7lSh_16sWbg6H3xw4DB2z2HFlbXNgxRWa2lWZyq4YAvBNdQNtPby375mN6V8AJjG8GbBHrsp-rHy426i4djvS5UnqvoByVPsh98v4WfBqnyFHflDX6WhxOkb6XTLrrIfC97NXLLty_N2vam799e39VNXR6Hksc4-8JREG2QKrVKNMDag5ag5JkQPmI0QEjxGiyYHo4UGiMGGmGSUUi4Z_GkjTaUQZnegYe_p5Di4c7qb092cLn8ABJxNDg</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Sariyüce, Ahmet Erdem</creator><creator>Seshadhri, C.</creator><creator>Pinar, Ali</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180901</creationdate><title>Local algorithms for hierarchical dense subgraph discovery</title><author>Sariyüce, Ahmet Erdem ; Seshadhri, C. ; Pinar, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-fab1dd29b3db9448267be71e51edeea0ef62230aec7e6fb652500cb7bcd3c333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sariyüce, Ahmet Erdem</creatorcontrib><creatorcontrib>Seshadhri, C.</creatorcontrib><creatorcontrib>Pinar, Ali</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the VLDB Endowment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sariyüce, Ahmet Erdem</au><au>Seshadhri, C.</au><au>Pinar, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local algorithms for hierarchical dense subgraph discovery</atitle><jtitle>Proceedings of the VLDB Endowment</jtitle><date>2018-09-01</date><risdate>2018</risdate><volume>12</volume><issue>1</issue><spage>43</spage><epage>56</epage><pages>43-56</pages><issn>2150-8097</issn><eissn>2150-8097</eissn><abstract>Finding the dense regions of a graph and relations among them is a fundamental problem in network analysis. Core and truss decompositions reveal dense subgraphs with hierarchical relations. The incremental nature of algorithms for computing these decompositions and the need for global information at each step of the algorithm hinders scalable parallelization and approximations since the densest regions are not revealed until the end. In a previous work, Lu et al. proposed to iteratively compute the h -indices of neighbor vertex degrees to obtain the core numbers and prove that the convergence is obtained after a finite number of iterations. This work generalizes the iterative h -index computation for truss decomposition as well as nucleus decomposition which leverages higher-order structures to generalize core and truss decompositions. In addition, we prove convergence bounds on the number of iterations. We present a framework of local algorithms to obtain the core, truss, and nucleus decompositions. Our algorithms are local, parallel, offer high scalability, and enable approximations to explore time and quality trade-offs. Our shared-memory implementation verifies the efficiency, scalability, and effectiveness of our local algorithms on real-world networks.</abstract><doi>10.14778/3275536.3275540</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2150-8097
ispartof Proceedings of the VLDB Endowment, 2018-09, Vol.12 (1), p.43-56
issn 2150-8097
2150-8097
language eng
recordid cdi_crossref_primary_10_14778_3275536_3275540
source ACM Digital Library
title Local algorithms for hierarchical dense subgraph discovery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A39%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20algorithms%20for%20hierarchical%20dense%20subgraph%20discovery&rft.jtitle=Proceedings%20of%20the%20VLDB%20Endowment&rft.au=Sariy%C3%BCce,%20Ahmet%20Erdem&rft.date=2018-09-01&rft.volume=12&rft.issue=1&rft.spage=43&rft.epage=56&rft.pages=43-56&rft.issn=2150-8097&rft.eissn=2150-8097&rft_id=info:doi/10.14778/3275536.3275540&rft_dat=%3Ccrossref%3E10_14778_3275536_3275540%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true