Local algorithms for hierarchical dense subgraph discovery
Finding the dense regions of a graph and relations among them is a fundamental problem in network analysis. Core and truss decompositions reveal dense subgraphs with hierarchical relations. The incremental nature of algorithms for computing these decompositions and the need for global information at...
Gespeichert in:
Veröffentlicht in: | Proceedings of the VLDB Endowment 2018-09, Vol.12 (1), p.43-56 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 56 |
---|---|
container_issue | 1 |
container_start_page | 43 |
container_title | Proceedings of the VLDB Endowment |
container_volume | 12 |
creator | Sariyüce, Ahmet Erdem Seshadhri, C. Pinar, Ali |
description | Finding the dense regions of a graph and relations among them is a fundamental problem in network analysis. Core and truss decompositions reveal dense subgraphs with hierarchical relations. The incremental nature of algorithms for computing these decompositions and the need for global information at each step of the algorithm hinders scalable parallelization and approximations since the densest regions are not revealed until the end. In a previous work, Lu et al. proposed to iteratively compute the
h
-indices of neighbor vertex degrees to obtain the core numbers and prove that the convergence is obtained after a finite number of iterations. This work generalizes the iterative
h
-index computation for truss decomposition as well as nucleus decomposition which leverages higher-order structures to generalize core and truss decompositions. In addition, we prove convergence bounds on the number of iterations. We present a framework of local algorithms to obtain the core, truss, and nucleus decompositions. Our algorithms are local, parallel, offer high scalability, and enable approximations to explore time and quality trade-offs. Our shared-memory implementation verifies the efficiency, scalability, and effectiveness of our local algorithms on real-world networks. |
doi_str_mv | 10.14778/3275536.3275540 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_14778_3275536_3275540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_14778_3275536_3275540</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-fab1dd29b3db9448267be71e51edeea0ef62230aec7e6fb652500cb7bcd3c333</originalsourceid><addsrcrecordid>eNpNj0tLw0AURgdRsFb3LvMHUu-8E3dS1AoBN90P87jTRFJT7lSh_16sWbg6H3xw4DB2z2HFlbXNgxRWa2lWZyq4YAvBNdQNtPby375mN6V8AJjG8GbBHrsp-rHy426i4djvS5UnqvoByVPsh98v4WfBqnyFHflDX6WhxOkb6XTLrrIfC97NXLLty_N2vam799e39VNXR6Hksc4-8JREG2QKrVKNMDag5ag5JkQPmI0QEjxGiyYHo4UGiMGGmGSUUi4Z_GkjTaUQZnegYe_p5Di4c7qb092cLn8ABJxNDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Local algorithms for hierarchical dense subgraph discovery</title><source>ACM Digital Library</source><creator>Sariyüce, Ahmet Erdem ; Seshadhri, C. ; Pinar, Ali</creator><creatorcontrib>Sariyüce, Ahmet Erdem ; Seshadhri, C. ; Pinar, Ali</creatorcontrib><description>Finding the dense regions of a graph and relations among them is a fundamental problem in network analysis. Core and truss decompositions reveal dense subgraphs with hierarchical relations. The incremental nature of algorithms for computing these decompositions and the need for global information at each step of the algorithm hinders scalable parallelization and approximations since the densest regions are not revealed until the end. In a previous work, Lu et al. proposed to iteratively compute the
h
-indices of neighbor vertex degrees to obtain the core numbers and prove that the convergence is obtained after a finite number of iterations. This work generalizes the iterative
h
-index computation for truss decomposition as well as nucleus decomposition which leverages higher-order structures to generalize core and truss decompositions. In addition, we prove convergence bounds on the number of iterations. We present a framework of local algorithms to obtain the core, truss, and nucleus decompositions. Our algorithms are local, parallel, offer high scalability, and enable approximations to explore time and quality trade-offs. Our shared-memory implementation verifies the efficiency, scalability, and effectiveness of our local algorithms on real-world networks.</description><identifier>ISSN: 2150-8097</identifier><identifier>EISSN: 2150-8097</identifier><identifier>DOI: 10.14778/3275536.3275540</identifier><language>eng</language><ispartof>Proceedings of the VLDB Endowment, 2018-09, Vol.12 (1), p.43-56</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c243t-fab1dd29b3db9448267be71e51edeea0ef62230aec7e6fb652500cb7bcd3c333</citedby><cites>FETCH-LOGICAL-c243t-fab1dd29b3db9448267be71e51edeea0ef62230aec7e6fb652500cb7bcd3c333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Sariyüce, Ahmet Erdem</creatorcontrib><creatorcontrib>Seshadhri, C.</creatorcontrib><creatorcontrib>Pinar, Ali</creatorcontrib><title>Local algorithms for hierarchical dense subgraph discovery</title><title>Proceedings of the VLDB Endowment</title><description>Finding the dense regions of a graph and relations among them is a fundamental problem in network analysis. Core and truss decompositions reveal dense subgraphs with hierarchical relations. The incremental nature of algorithms for computing these decompositions and the need for global information at each step of the algorithm hinders scalable parallelization and approximations since the densest regions are not revealed until the end. In a previous work, Lu et al. proposed to iteratively compute the
h
-indices of neighbor vertex degrees to obtain the core numbers and prove that the convergence is obtained after a finite number of iterations. This work generalizes the iterative
h
-index computation for truss decomposition as well as nucleus decomposition which leverages higher-order structures to generalize core and truss decompositions. In addition, we prove convergence bounds on the number of iterations. We present a framework of local algorithms to obtain the core, truss, and nucleus decompositions. Our algorithms are local, parallel, offer high scalability, and enable approximations to explore time and quality trade-offs. Our shared-memory implementation verifies the efficiency, scalability, and effectiveness of our local algorithms on real-world networks.</description><issn>2150-8097</issn><issn>2150-8097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNj0tLw0AURgdRsFb3LvMHUu-8E3dS1AoBN90P87jTRFJT7lSh_16sWbg6H3xw4DB2z2HFlbXNgxRWa2lWZyq4YAvBNdQNtPby375mN6V8AJjG8GbBHrsp-rHy426i4djvS5UnqvoByVPsh98v4WfBqnyFHflDX6WhxOkb6XTLrrIfC97NXLLty_N2vam799e39VNXR6Hksc4-8JREG2QKrVKNMDag5ag5JkQPmI0QEjxGiyYHo4UGiMGGmGSUUi4Z_GkjTaUQZnegYe_p5Di4c7qb092cLn8ABJxNDg</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Sariyüce, Ahmet Erdem</creator><creator>Seshadhri, C.</creator><creator>Pinar, Ali</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180901</creationdate><title>Local algorithms for hierarchical dense subgraph discovery</title><author>Sariyüce, Ahmet Erdem ; Seshadhri, C. ; Pinar, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-fab1dd29b3db9448267be71e51edeea0ef62230aec7e6fb652500cb7bcd3c333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sariyüce, Ahmet Erdem</creatorcontrib><creatorcontrib>Seshadhri, C.</creatorcontrib><creatorcontrib>Pinar, Ali</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the VLDB Endowment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sariyüce, Ahmet Erdem</au><au>Seshadhri, C.</au><au>Pinar, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local algorithms for hierarchical dense subgraph discovery</atitle><jtitle>Proceedings of the VLDB Endowment</jtitle><date>2018-09-01</date><risdate>2018</risdate><volume>12</volume><issue>1</issue><spage>43</spage><epage>56</epage><pages>43-56</pages><issn>2150-8097</issn><eissn>2150-8097</eissn><abstract>Finding the dense regions of a graph and relations among them is a fundamental problem in network analysis. Core and truss decompositions reveal dense subgraphs with hierarchical relations. The incremental nature of algorithms for computing these decompositions and the need for global information at each step of the algorithm hinders scalable parallelization and approximations since the densest regions are not revealed until the end. In a previous work, Lu et al. proposed to iteratively compute the
h
-indices of neighbor vertex degrees to obtain the core numbers and prove that the convergence is obtained after a finite number of iterations. This work generalizes the iterative
h
-index computation for truss decomposition as well as nucleus decomposition which leverages higher-order structures to generalize core and truss decompositions. In addition, we prove convergence bounds on the number of iterations. We present a framework of local algorithms to obtain the core, truss, and nucleus decompositions. Our algorithms are local, parallel, offer high scalability, and enable approximations to explore time and quality trade-offs. Our shared-memory implementation verifies the efficiency, scalability, and effectiveness of our local algorithms on real-world networks.</abstract><doi>10.14778/3275536.3275540</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2150-8097 |
ispartof | Proceedings of the VLDB Endowment, 2018-09, Vol.12 (1), p.43-56 |
issn | 2150-8097 2150-8097 |
language | eng |
recordid | cdi_crossref_primary_10_14778_3275536_3275540 |
source | ACM Digital Library |
title | Local algorithms for hierarchical dense subgraph discovery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A39%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20algorithms%20for%20hierarchical%20dense%20subgraph%20discovery&rft.jtitle=Proceedings%20of%20the%20VLDB%20Endowment&rft.au=Sariy%C3%BCce,%20Ahmet%20Erdem&rft.date=2018-09-01&rft.volume=12&rft.issue=1&rft.spage=43&rft.epage=56&rft.pages=43-56&rft.issn=2150-8097&rft.eissn=2150-8097&rft_id=info:doi/10.14778/3275536.3275540&rft_dat=%3Ccrossref%3E10_14778_3275536_3275540%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |