Experimental analysis of distributed graph systems
This paper evaluates eight parallel graph processing systems: Hadoop, HaLoop, Vertica, Giraph, GraphLab (PowerGraph), Blogel, Flink Gelly, and GraphX (SPARK) over four very large datasets (Twitter, World Road Network, UK 200705, and ClueWeb) using four workloads (PageRank, WCC, SSSP and K-hop). The...
Gespeichert in:
Veröffentlicht in: | Proceedings of the VLDB Endowment 2018-06, Vol.11 (10), p.1151-1164 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1164 |
---|---|
container_issue | 10 |
container_start_page | 1151 |
container_title | Proceedings of the VLDB Endowment |
container_volume | 11 |
creator | Ammar, Khaled Özsu, M. Tamer |
description | This paper evaluates eight parallel graph processing systems: Hadoop, HaLoop, Vertica, Giraph, GraphLab (PowerGraph), Blogel, Flink Gelly, and GraphX (SPARK) over four very large datasets (Twitter, World Road Network, UK 200705, and ClueWeb) using four workloads (PageRank, WCC, SSSP and K-hop). The main objective is to perform an independent scale-out study by experimentally analyzing the performance, usability, and scalability (using up to 128 machines) of these systems. In addition to performance results, we discuss our experiences in using these systems and suggest some system tuning heuristics that lead to better performance. |
doi_str_mv | 10.14778/3231751.3231764 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_14778_3231751_3231764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_14778_3231751_3231764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-e2e0a5fc8f70ba797dfaa97289403fded7266df16b824f862ea8c05fb81de1073</originalsourceid><addsrcrecordid>eNpNj8tOwzAQRS0EEqVlz9I_kDJ-xHaWqCoPqRIbuo4m8RiC0jbyBIn8Pahkwerc1dU5QtwpWCvrfbg32ihfqvWZzl6IhVYlFAEqf_lvX4sb5k8AF5wKC6G33wPl7kDHEXuJR-wn7liekowdj7lrvkaK8j3j8CF54pEOvBJXCXum25lLsX_cvm2ei93r08vmYVe02pqxIE2AZWpD8tCgr3xMiJXXobJgUqTotXMxKdcEbVNwmjC0UKYmqEgKvFkK-Ptt84k5U6qHX1HMU62gPjfXc3M9N5sfglZKBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Experimental analysis of distributed graph systems</title><source>ACM Digital Library Complete</source><creator>Ammar, Khaled ; Özsu, M. Tamer</creator><creatorcontrib>Ammar, Khaled ; Özsu, M. Tamer</creatorcontrib><description>This paper evaluates eight parallel graph processing systems: Hadoop, HaLoop, Vertica, Giraph, GraphLab (PowerGraph), Blogel, Flink Gelly, and GraphX (SPARK) over four very large datasets (Twitter, World Road Network, UK 200705, and ClueWeb) using four workloads (PageRank, WCC, SSSP and K-hop). The main objective is to perform an independent scale-out study by experimentally analyzing the performance, usability, and scalability (using up to 128 machines) of these systems. In addition to performance results, we discuss our experiences in using these systems and suggest some system tuning heuristics that lead to better performance.</description><identifier>ISSN: 2150-8097</identifier><identifier>EISSN: 2150-8097</identifier><identifier>DOI: 10.14778/3231751.3231764</identifier><language>eng</language><ispartof>Proceedings of the VLDB Endowment, 2018-06, Vol.11 (10), p.1151-1164</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c243t-e2e0a5fc8f70ba797dfaa97289403fded7266df16b824f862ea8c05fb81de1073</citedby><cites>FETCH-LOGICAL-c243t-e2e0a5fc8f70ba797dfaa97289403fded7266df16b824f862ea8c05fb81de1073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ammar, Khaled</creatorcontrib><creatorcontrib>Özsu, M. Tamer</creatorcontrib><title>Experimental analysis of distributed graph systems</title><title>Proceedings of the VLDB Endowment</title><description>This paper evaluates eight parallel graph processing systems: Hadoop, HaLoop, Vertica, Giraph, GraphLab (PowerGraph), Blogel, Flink Gelly, and GraphX (SPARK) over four very large datasets (Twitter, World Road Network, UK 200705, and ClueWeb) using four workloads (PageRank, WCC, SSSP and K-hop). The main objective is to perform an independent scale-out study by experimentally analyzing the performance, usability, and scalability (using up to 128 machines) of these systems. In addition to performance results, we discuss our experiences in using these systems and suggest some system tuning heuristics that lead to better performance.</description><issn>2150-8097</issn><issn>2150-8097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNj8tOwzAQRS0EEqVlz9I_kDJ-xHaWqCoPqRIbuo4m8RiC0jbyBIn8Pahkwerc1dU5QtwpWCvrfbg32ihfqvWZzl6IhVYlFAEqf_lvX4sb5k8AF5wKC6G33wPl7kDHEXuJR-wn7liekowdj7lrvkaK8j3j8CF54pEOvBJXCXum25lLsX_cvm2ei93r08vmYVe02pqxIE2AZWpD8tCgr3xMiJXXobJgUqTotXMxKdcEbVNwmjC0UKYmqEgKvFkK-Ptt84k5U6qHX1HMU62gPjfXc3M9N5sfglZKBg</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Ammar, Khaled</creator><creator>Özsu, M. Tamer</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180601</creationdate><title>Experimental analysis of distributed graph systems</title><author>Ammar, Khaled ; Özsu, M. Tamer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-e2e0a5fc8f70ba797dfaa97289403fded7266df16b824f862ea8c05fb81de1073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ammar, Khaled</creatorcontrib><creatorcontrib>Özsu, M. Tamer</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the VLDB Endowment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ammar, Khaled</au><au>Özsu, M. Tamer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental analysis of distributed graph systems</atitle><jtitle>Proceedings of the VLDB Endowment</jtitle><date>2018-06-01</date><risdate>2018</risdate><volume>11</volume><issue>10</issue><spage>1151</spage><epage>1164</epage><pages>1151-1164</pages><issn>2150-8097</issn><eissn>2150-8097</eissn><abstract>This paper evaluates eight parallel graph processing systems: Hadoop, HaLoop, Vertica, Giraph, GraphLab (PowerGraph), Blogel, Flink Gelly, and GraphX (SPARK) over four very large datasets (Twitter, World Road Network, UK 200705, and ClueWeb) using four workloads (PageRank, WCC, SSSP and K-hop). The main objective is to perform an independent scale-out study by experimentally analyzing the performance, usability, and scalability (using up to 128 machines) of these systems. In addition to performance results, we discuss our experiences in using these systems and suggest some system tuning heuristics that lead to better performance.</abstract><doi>10.14778/3231751.3231764</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2150-8097 |
ispartof | Proceedings of the VLDB Endowment, 2018-06, Vol.11 (10), p.1151-1164 |
issn | 2150-8097 2150-8097 |
language | eng |
recordid | cdi_crossref_primary_10_14778_3231751_3231764 |
source | ACM Digital Library Complete |
title | Experimental analysis of distributed graph systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A31%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20analysis%20of%20distributed%20graph%20systems&rft.jtitle=Proceedings%20of%20the%20VLDB%20Endowment&rft.au=Ammar,%20Khaled&rft.date=2018-06-01&rft.volume=11&rft.issue=10&rft.spage=1151&rft.epage=1164&rft.pages=1151-1164&rft.issn=2150-8097&rft.eissn=2150-8097&rft_id=info:doi/10.14778/3231751.3231764&rft_dat=%3Ccrossref%3E10_14778_3231751_3231764%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |