Experimental analysis of distributed graph systems

This paper evaluates eight parallel graph processing systems: Hadoop, HaLoop, Vertica, Giraph, GraphLab (PowerGraph), Blogel, Flink Gelly, and GraphX (SPARK) over four very large datasets (Twitter, World Road Network, UK 200705, and ClueWeb) using four workloads (PageRank, WCC, SSSP and K-hop). The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the VLDB Endowment 2018-06, Vol.11 (10), p.1151-1164
Hauptverfasser: Ammar, Khaled, Özsu, M. Tamer
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1164
container_issue 10
container_start_page 1151
container_title Proceedings of the VLDB Endowment
container_volume 11
creator Ammar, Khaled
Özsu, M. Tamer
description This paper evaluates eight parallel graph processing systems: Hadoop, HaLoop, Vertica, Giraph, GraphLab (PowerGraph), Blogel, Flink Gelly, and GraphX (SPARK) over four very large datasets (Twitter, World Road Network, UK 200705, and ClueWeb) using four workloads (PageRank, WCC, SSSP and K-hop). The main objective is to perform an independent scale-out study by experimentally analyzing the performance, usability, and scalability (using up to 128 machines) of these systems. In addition to performance results, we discuss our experiences in using these systems and suggest some system tuning heuristics that lead to better performance.
doi_str_mv 10.14778/3231751.3231764
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_14778_3231751_3231764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_14778_3231751_3231764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-e2e0a5fc8f70ba797dfaa97289403fded7266df16b824f862ea8c05fb81de1073</originalsourceid><addsrcrecordid>eNpNj8tOwzAQRS0EEqVlz9I_kDJ-xHaWqCoPqRIbuo4m8RiC0jbyBIn8Pahkwerc1dU5QtwpWCvrfbg32ihfqvWZzl6IhVYlFAEqf_lvX4sb5k8AF5wKC6G33wPl7kDHEXuJR-wn7liekowdj7lrvkaK8j3j8CF54pEOvBJXCXum25lLsX_cvm2ei93r08vmYVe02pqxIE2AZWpD8tCgr3xMiJXXobJgUqTotXMxKdcEbVNwmjC0UKYmqEgKvFkK-Ptt84k5U6qHX1HMU62gPjfXc3M9N5sfglZKBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Experimental analysis of distributed graph systems</title><source>ACM Digital Library Complete</source><creator>Ammar, Khaled ; Özsu, M. Tamer</creator><creatorcontrib>Ammar, Khaled ; Özsu, M. Tamer</creatorcontrib><description>This paper evaluates eight parallel graph processing systems: Hadoop, HaLoop, Vertica, Giraph, GraphLab (PowerGraph), Blogel, Flink Gelly, and GraphX (SPARK) over four very large datasets (Twitter, World Road Network, UK 200705, and ClueWeb) using four workloads (PageRank, WCC, SSSP and K-hop). The main objective is to perform an independent scale-out study by experimentally analyzing the performance, usability, and scalability (using up to 128 machines) of these systems. In addition to performance results, we discuss our experiences in using these systems and suggest some system tuning heuristics that lead to better performance.</description><identifier>ISSN: 2150-8097</identifier><identifier>EISSN: 2150-8097</identifier><identifier>DOI: 10.14778/3231751.3231764</identifier><language>eng</language><ispartof>Proceedings of the VLDB Endowment, 2018-06, Vol.11 (10), p.1151-1164</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c243t-e2e0a5fc8f70ba797dfaa97289403fded7266df16b824f862ea8c05fb81de1073</citedby><cites>FETCH-LOGICAL-c243t-e2e0a5fc8f70ba797dfaa97289403fded7266df16b824f862ea8c05fb81de1073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ammar, Khaled</creatorcontrib><creatorcontrib>Özsu, M. Tamer</creatorcontrib><title>Experimental analysis of distributed graph systems</title><title>Proceedings of the VLDB Endowment</title><description>This paper evaluates eight parallel graph processing systems: Hadoop, HaLoop, Vertica, Giraph, GraphLab (PowerGraph), Blogel, Flink Gelly, and GraphX (SPARK) over four very large datasets (Twitter, World Road Network, UK 200705, and ClueWeb) using four workloads (PageRank, WCC, SSSP and K-hop). The main objective is to perform an independent scale-out study by experimentally analyzing the performance, usability, and scalability (using up to 128 machines) of these systems. In addition to performance results, we discuss our experiences in using these systems and suggest some system tuning heuristics that lead to better performance.</description><issn>2150-8097</issn><issn>2150-8097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNj8tOwzAQRS0EEqVlz9I_kDJ-xHaWqCoPqRIbuo4m8RiC0jbyBIn8Pahkwerc1dU5QtwpWCvrfbg32ihfqvWZzl6IhVYlFAEqf_lvX4sb5k8AF5wKC6G33wPl7kDHEXuJR-wn7liekowdj7lrvkaK8j3j8CF54pEOvBJXCXum25lLsX_cvm2ei93r08vmYVe02pqxIE2AZWpD8tCgr3xMiJXXobJgUqTotXMxKdcEbVNwmjC0UKYmqEgKvFkK-Ptt84k5U6qHX1HMU62gPjfXc3M9N5sfglZKBg</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Ammar, Khaled</creator><creator>Özsu, M. Tamer</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180601</creationdate><title>Experimental analysis of distributed graph systems</title><author>Ammar, Khaled ; Özsu, M. Tamer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-e2e0a5fc8f70ba797dfaa97289403fded7266df16b824f862ea8c05fb81de1073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ammar, Khaled</creatorcontrib><creatorcontrib>Özsu, M. Tamer</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the VLDB Endowment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ammar, Khaled</au><au>Özsu, M. Tamer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental analysis of distributed graph systems</atitle><jtitle>Proceedings of the VLDB Endowment</jtitle><date>2018-06-01</date><risdate>2018</risdate><volume>11</volume><issue>10</issue><spage>1151</spage><epage>1164</epage><pages>1151-1164</pages><issn>2150-8097</issn><eissn>2150-8097</eissn><abstract>This paper evaluates eight parallel graph processing systems: Hadoop, HaLoop, Vertica, Giraph, GraphLab (PowerGraph), Blogel, Flink Gelly, and GraphX (SPARK) over four very large datasets (Twitter, World Road Network, UK 200705, and ClueWeb) using four workloads (PageRank, WCC, SSSP and K-hop). The main objective is to perform an independent scale-out study by experimentally analyzing the performance, usability, and scalability (using up to 128 machines) of these systems. In addition to performance results, we discuss our experiences in using these systems and suggest some system tuning heuristics that lead to better performance.</abstract><doi>10.14778/3231751.3231764</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2150-8097
ispartof Proceedings of the VLDB Endowment, 2018-06, Vol.11 (10), p.1151-1164
issn 2150-8097
2150-8097
language eng
recordid cdi_crossref_primary_10_14778_3231751_3231764
source ACM Digital Library Complete
title Experimental analysis of distributed graph systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A31%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20analysis%20of%20distributed%20graph%20systems&rft.jtitle=Proceedings%20of%20the%20VLDB%20Endowment&rft.au=Ammar,%20Khaled&rft.date=2018-06-01&rft.volume=11&rft.issue=10&rft.spage=1151&rft.epage=1164&rft.pages=1151-1164&rft.issn=2150-8097&rft.eissn=2150-8097&rft_id=info:doi/10.14778/3231751.3231764&rft_dat=%3Ccrossref%3E10_14778_3231751_3231764%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true