Foresight: recommending visual insights

Current tools for exploratory data analysis (EDA) require users to manually select data attributes, statistical computations and visual encodings. This can be daunting for large-scale, complex data. We introduce Foresight, a system that helps the user rapidly discover visual insights from large high...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the VLDB Endowment 2017-08, Vol.10 (12), p.1937-1940
Hauptverfasser: Demiralp, Çağatay, Haas, Peter J., Parthasarathy, Srinivasan, Pedapati, Tejaswini
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1940
container_issue 12
container_start_page 1937
container_title Proceedings of the VLDB Endowment
container_volume 10
creator Demiralp, Çağatay
Haas, Peter J.
Parthasarathy, Srinivasan
Pedapati, Tejaswini
description Current tools for exploratory data analysis (EDA) require users to manually select data attributes, statistical computations and visual encodings. This can be daunting for large-scale, complex data. We introduce Foresight, a system that helps the user rapidly discover visual insights from large high-dimensional datasets. Formally, an "insight" is a strong manifestation of a statistical property of the data, e.g., high correlation between two attributes, high skewness or concentration about the mean of a single attribute, a strong clustering of values, and so on. For each insight type, Foresight initially presents visualizations of the top k instances in the data, based on an appropriate ranking metric. The user can then look at "nearby" insights by issuing "insight queries" containing constraints on insight strengths and data attributes. Thus the user can directly explore the space of insights, rather than the space of data dimensions and visual encodings as in other visual recommender systems. Foresight also provides "global" views of insight space to help orient the user and ensure a thorough exploration process. Furthermore, Foresight facilitates interactive exploration of large datasets through fast, approximate sketching.
doi_str_mv 10.14778/3137765.3137813
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_14778_3137765_3137813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_14778_3137765_3137813</sourcerecordid><originalsourceid>FETCH-LOGICAL-c196t-8a8806c21fd7c341202b2d01ad697178982c4847234971878f5021897fc89a573</originalsourceid><addsrcrecordid>eNpNj71uwjAURq2qSKTAzks4vdd2fK9HFJW2UiSWdraME_MjKpDN0rdvoRk6ne9bjnSEWCLUaIj4WaMmsk19I6N-EJXCBiSDo8d_eyqeSjkCWLbIlajW5zyUw25_nYtJCqcyLEbOxOf65aN9k93m9b1ddTKis1fJgRlsVJh6itqgArVVPWDorSMkdqyiYUNKm9_PxKkBhewoRXahIT0T8OeN-VxKHpK_5MNXyN8ewd9T_JjixxT9A0b0N6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Foresight: recommending visual insights</title><source>ACM Digital Library Complete</source><creator>Demiralp, Çağatay ; Haas, Peter J. ; Parthasarathy, Srinivasan ; Pedapati, Tejaswini</creator><creatorcontrib>Demiralp, Çağatay ; Haas, Peter J. ; Parthasarathy, Srinivasan ; Pedapati, Tejaswini</creatorcontrib><description>Current tools for exploratory data analysis (EDA) require users to manually select data attributes, statistical computations and visual encodings. This can be daunting for large-scale, complex data. We introduce Foresight, a system that helps the user rapidly discover visual insights from large high-dimensional datasets. Formally, an "insight" is a strong manifestation of a statistical property of the data, e.g., high correlation between two attributes, high skewness or concentration about the mean of a single attribute, a strong clustering of values, and so on. For each insight type, Foresight initially presents visualizations of the top k instances in the data, based on an appropriate ranking metric. The user can then look at "nearby" insights by issuing "insight queries" containing constraints on insight strengths and data attributes. Thus the user can directly explore the space of insights, rather than the space of data dimensions and visual encodings as in other visual recommender systems. Foresight also provides "global" views of insight space to help orient the user and ensure a thorough exploration process. Furthermore, Foresight facilitates interactive exploration of large datasets through fast, approximate sketching.</description><identifier>ISSN: 2150-8097</identifier><identifier>EISSN: 2150-8097</identifier><identifier>DOI: 10.14778/3137765.3137813</identifier><language>eng</language><ispartof>Proceedings of the VLDB Endowment, 2017-08, Vol.10 (12), p.1937-1940</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c196t-8a8806c21fd7c341202b2d01ad697178982c4847234971878f5021897fc89a573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Demiralp, Çağatay</creatorcontrib><creatorcontrib>Haas, Peter J.</creatorcontrib><creatorcontrib>Parthasarathy, Srinivasan</creatorcontrib><creatorcontrib>Pedapati, Tejaswini</creatorcontrib><title>Foresight: recommending visual insights</title><title>Proceedings of the VLDB Endowment</title><description>Current tools for exploratory data analysis (EDA) require users to manually select data attributes, statistical computations and visual encodings. This can be daunting for large-scale, complex data. We introduce Foresight, a system that helps the user rapidly discover visual insights from large high-dimensional datasets. Formally, an "insight" is a strong manifestation of a statistical property of the data, e.g., high correlation between two attributes, high skewness or concentration about the mean of a single attribute, a strong clustering of values, and so on. For each insight type, Foresight initially presents visualizations of the top k instances in the data, based on an appropriate ranking metric. The user can then look at "nearby" insights by issuing "insight queries" containing constraints on insight strengths and data attributes. Thus the user can directly explore the space of insights, rather than the space of data dimensions and visual encodings as in other visual recommender systems. Foresight also provides "global" views of insight space to help orient the user and ensure a thorough exploration process. Furthermore, Foresight facilitates interactive exploration of large datasets through fast, approximate sketching.</description><issn>2150-8097</issn><issn>2150-8097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpNj71uwjAURq2qSKTAzks4vdd2fK9HFJW2UiSWdraME_MjKpDN0rdvoRk6ne9bjnSEWCLUaIj4WaMmsk19I6N-EJXCBiSDo8d_eyqeSjkCWLbIlajW5zyUw25_nYtJCqcyLEbOxOf65aN9k93m9b1ddTKis1fJgRlsVJh6itqgArVVPWDorSMkdqyiYUNKm9_PxKkBhewoRXahIT0T8OeN-VxKHpK_5MNXyN8ewd9T_JjixxT9A0b0N6w</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Demiralp, Çağatay</creator><creator>Haas, Peter J.</creator><creator>Parthasarathy, Srinivasan</creator><creator>Pedapati, Tejaswini</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201708</creationdate><title>Foresight</title><author>Demiralp, Çağatay ; Haas, Peter J. ; Parthasarathy, Srinivasan ; Pedapati, Tejaswini</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c196t-8a8806c21fd7c341202b2d01ad697178982c4847234971878f5021897fc89a573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Demiralp, Çağatay</creatorcontrib><creatorcontrib>Haas, Peter J.</creatorcontrib><creatorcontrib>Parthasarathy, Srinivasan</creatorcontrib><creatorcontrib>Pedapati, Tejaswini</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the VLDB Endowment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Demiralp, Çağatay</au><au>Haas, Peter J.</au><au>Parthasarathy, Srinivasan</au><au>Pedapati, Tejaswini</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Foresight: recommending visual insights</atitle><jtitle>Proceedings of the VLDB Endowment</jtitle><date>2017-08</date><risdate>2017</risdate><volume>10</volume><issue>12</issue><spage>1937</spage><epage>1940</epage><pages>1937-1940</pages><issn>2150-8097</issn><eissn>2150-8097</eissn><abstract>Current tools for exploratory data analysis (EDA) require users to manually select data attributes, statistical computations and visual encodings. This can be daunting for large-scale, complex data. We introduce Foresight, a system that helps the user rapidly discover visual insights from large high-dimensional datasets. Formally, an "insight" is a strong manifestation of a statistical property of the data, e.g., high correlation between two attributes, high skewness or concentration about the mean of a single attribute, a strong clustering of values, and so on. For each insight type, Foresight initially presents visualizations of the top k instances in the data, based on an appropriate ranking metric. The user can then look at "nearby" insights by issuing "insight queries" containing constraints on insight strengths and data attributes. Thus the user can directly explore the space of insights, rather than the space of data dimensions and visual encodings as in other visual recommender systems. Foresight also provides "global" views of insight space to help orient the user and ensure a thorough exploration process. Furthermore, Foresight facilitates interactive exploration of large datasets through fast, approximate sketching.</abstract><doi>10.14778/3137765.3137813</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2150-8097
ispartof Proceedings of the VLDB Endowment, 2017-08, Vol.10 (12), p.1937-1940
issn 2150-8097
2150-8097
language eng
recordid cdi_crossref_primary_10_14778_3137765_3137813
source ACM Digital Library Complete
title Foresight: recommending visual insights
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A59%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Foresight:%20recommending%20visual%20insights&rft.jtitle=Proceedings%20of%20the%20VLDB%20Endowment&rft.au=Demiralp,%20%C3%87a%C4%9Fatay&rft.date=2017-08&rft.volume=10&rft.issue=12&rft.spage=1937&rft.epage=1940&rft.pages=1937-1940&rft.issn=2150-8097&rft.eissn=2150-8097&rft_id=info:doi/10.14778/3137765.3137813&rft_dat=%3Ccrossref%3E10_14778_3137765_3137813%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true