I've seen "enough": incrementally improving visualizations to support rapid decision making

Data visualization is an effective mechanism for identifying trends, insights, and anomalies in data. On large datasets, however, generating visualizations can take a long time, delaying the extraction of insights, hampering decision making, and reducing exploration time. One solution is to use onli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the VLDB Endowment 2017-08, Vol.10 (11), p.1262-1273
Hauptverfasser: Rahman, Sajjadur, Aliakbarpour, Maryam, Kong, Ha Kyung, Blais, Eric, Karahalios, Karrie, Parameswaran, Aditya, Rubinfield, Ronitt
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1273
container_issue 11
container_start_page 1262
container_title Proceedings of the VLDB Endowment
container_volume 10
creator Rahman, Sajjadur
Aliakbarpour, Maryam
Kong, Ha Kyung
Blais, Eric
Karahalios, Karrie
Parameswaran, Aditya
Rubinfield, Ronitt
description Data visualization is an effective mechanism for identifying trends, insights, and anomalies in data. On large datasets, however, generating visualizations can take a long time, delaying the extraction of insights, hampering decision making, and reducing exploration time. One solution is to use online sampling-based schemes to generate visualizations faster while improving the displayed estimates incrementally, eventually converging to the exact visualization computed on the entire data. However, the intermediate visualizations are approximate, and often fluctuate drastically, leading to potentially incorrect decisions. We propose sampling-based incremental visualization algorithms that reveal the "salient" features of the visualization quickly---with a 46× speedup relative to baselines---while minimizing error, thus enabling rapid and error-free decision making. We demonstrate that these algorithms are optimal in terms of sample complexity, in that given the level of interactivity, they generate approximations that take as few samples as possible. We have developed the algorithms in the context of an incremental visualization tool, titled I nc V isage , for trendline and heatmap visualizations. We evaluate the usability of I nc V isage via user studies and demonstrate that users are able to make effective decisions with incrementally improving visualizations, especially compared to vanilla online-sampling based schemes.
doi_str_mv 10.14778/3137628.3137637
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_14778_3137628_3137637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_14778_3137628_3137637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c196t-26430d5626b0124c932775e5bce2440635ccd8a98edd92bc79e8c443443452393</originalsourceid><addsrcrecordid>eNpNjztrAkEURgeJoFEbq5RiY7V65955lkF8gWCj9bA7e30RH-wkgfz7ELOF8MH5qgNHiDcJY6msdROSZA268YNkG6KNUkPmwNuXp98SrymdAYwz0rVFfzX65kFivg6GfL19HY7Drmju84_EvZodsZvPttNltt4sVtP3dRalN58ZGkVQaoOmAIkqekJrNesiMioFhnSMpcu947L0WETr2UWl6G8ayVNHwL83VreUKt6He3W65NVPkBAeTaFuCnUT_QJvxTq3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>I've seen "enough": incrementally improving visualizations to support rapid decision making</title><source>ACM Digital Library Complete</source><creator>Rahman, Sajjadur ; Aliakbarpour, Maryam ; Kong, Ha Kyung ; Blais, Eric ; Karahalios, Karrie ; Parameswaran, Aditya ; Rubinfield, Ronitt</creator><creatorcontrib>Rahman, Sajjadur ; Aliakbarpour, Maryam ; Kong, Ha Kyung ; Blais, Eric ; Karahalios, Karrie ; Parameswaran, Aditya ; Rubinfield, Ronitt</creatorcontrib><description>Data visualization is an effective mechanism for identifying trends, insights, and anomalies in data. On large datasets, however, generating visualizations can take a long time, delaying the extraction of insights, hampering decision making, and reducing exploration time. One solution is to use online sampling-based schemes to generate visualizations faster while improving the displayed estimates incrementally, eventually converging to the exact visualization computed on the entire data. However, the intermediate visualizations are approximate, and often fluctuate drastically, leading to potentially incorrect decisions. We propose sampling-based incremental visualization algorithms that reveal the "salient" features of the visualization quickly---with a 46× speedup relative to baselines---while minimizing error, thus enabling rapid and error-free decision making. We demonstrate that these algorithms are optimal in terms of sample complexity, in that given the level of interactivity, they generate approximations that take as few samples as possible. We have developed the algorithms in the context of an incremental visualization tool, titled I nc V isage , for trendline and heatmap visualizations. We evaluate the usability of I nc V isage via user studies and demonstrate that users are able to make effective decisions with incrementally improving visualizations, especially compared to vanilla online-sampling based schemes.</description><identifier>ISSN: 2150-8097</identifier><identifier>EISSN: 2150-8097</identifier><identifier>DOI: 10.14778/3137628.3137637</identifier><language>eng</language><ispartof>Proceedings of the VLDB Endowment, 2017-08, Vol.10 (11), p.1262-1273</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c196t-26430d5626b0124c932775e5bce2440635ccd8a98edd92bc79e8c443443452393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Rahman, Sajjadur</creatorcontrib><creatorcontrib>Aliakbarpour, Maryam</creatorcontrib><creatorcontrib>Kong, Ha Kyung</creatorcontrib><creatorcontrib>Blais, Eric</creatorcontrib><creatorcontrib>Karahalios, Karrie</creatorcontrib><creatorcontrib>Parameswaran, Aditya</creatorcontrib><creatorcontrib>Rubinfield, Ronitt</creatorcontrib><title>I've seen "enough": incrementally improving visualizations to support rapid decision making</title><title>Proceedings of the VLDB Endowment</title><description>Data visualization is an effective mechanism for identifying trends, insights, and anomalies in data. On large datasets, however, generating visualizations can take a long time, delaying the extraction of insights, hampering decision making, and reducing exploration time. One solution is to use online sampling-based schemes to generate visualizations faster while improving the displayed estimates incrementally, eventually converging to the exact visualization computed on the entire data. However, the intermediate visualizations are approximate, and often fluctuate drastically, leading to potentially incorrect decisions. We propose sampling-based incremental visualization algorithms that reveal the "salient" features of the visualization quickly---with a 46× speedup relative to baselines---while minimizing error, thus enabling rapid and error-free decision making. We demonstrate that these algorithms are optimal in terms of sample complexity, in that given the level of interactivity, they generate approximations that take as few samples as possible. We have developed the algorithms in the context of an incremental visualization tool, titled I nc V isage , for trendline and heatmap visualizations. We evaluate the usability of I nc V isage via user studies and demonstrate that users are able to make effective decisions with incrementally improving visualizations, especially compared to vanilla online-sampling based schemes.</description><issn>2150-8097</issn><issn>2150-8097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpNjztrAkEURgeJoFEbq5RiY7V65955lkF8gWCj9bA7e30RH-wkgfz7ELOF8MH5qgNHiDcJY6msdROSZA268YNkG6KNUkPmwNuXp98SrymdAYwz0rVFfzX65kFivg6GfL19HY7Drmju84_EvZodsZvPttNltt4sVtP3dRalN58ZGkVQaoOmAIkqekJrNesiMioFhnSMpcu947L0WETr2UWl6G8ayVNHwL83VreUKt6He3W65NVPkBAeTaFuCnUT_QJvxTq3</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Rahman, Sajjadur</creator><creator>Aliakbarpour, Maryam</creator><creator>Kong, Ha Kyung</creator><creator>Blais, Eric</creator><creator>Karahalios, Karrie</creator><creator>Parameswaran, Aditya</creator><creator>Rubinfield, Ronitt</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201708</creationdate><title>I've seen "enough"</title><author>Rahman, Sajjadur ; Aliakbarpour, Maryam ; Kong, Ha Kyung ; Blais, Eric ; Karahalios, Karrie ; Parameswaran, Aditya ; Rubinfield, Ronitt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c196t-26430d5626b0124c932775e5bce2440635ccd8a98edd92bc79e8c443443452393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahman, Sajjadur</creatorcontrib><creatorcontrib>Aliakbarpour, Maryam</creatorcontrib><creatorcontrib>Kong, Ha Kyung</creatorcontrib><creatorcontrib>Blais, Eric</creatorcontrib><creatorcontrib>Karahalios, Karrie</creatorcontrib><creatorcontrib>Parameswaran, Aditya</creatorcontrib><creatorcontrib>Rubinfield, Ronitt</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the VLDB Endowment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahman, Sajjadur</au><au>Aliakbarpour, Maryam</au><au>Kong, Ha Kyung</au><au>Blais, Eric</au><au>Karahalios, Karrie</au><au>Parameswaran, Aditya</au><au>Rubinfield, Ronitt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>I've seen "enough": incrementally improving visualizations to support rapid decision making</atitle><jtitle>Proceedings of the VLDB Endowment</jtitle><date>2017-08</date><risdate>2017</risdate><volume>10</volume><issue>11</issue><spage>1262</spage><epage>1273</epage><pages>1262-1273</pages><issn>2150-8097</issn><eissn>2150-8097</eissn><abstract>Data visualization is an effective mechanism for identifying trends, insights, and anomalies in data. On large datasets, however, generating visualizations can take a long time, delaying the extraction of insights, hampering decision making, and reducing exploration time. One solution is to use online sampling-based schemes to generate visualizations faster while improving the displayed estimates incrementally, eventually converging to the exact visualization computed on the entire data. However, the intermediate visualizations are approximate, and often fluctuate drastically, leading to potentially incorrect decisions. We propose sampling-based incremental visualization algorithms that reveal the "salient" features of the visualization quickly---with a 46× speedup relative to baselines---while minimizing error, thus enabling rapid and error-free decision making. We demonstrate that these algorithms are optimal in terms of sample complexity, in that given the level of interactivity, they generate approximations that take as few samples as possible. We have developed the algorithms in the context of an incremental visualization tool, titled I nc V isage , for trendline and heatmap visualizations. We evaluate the usability of I nc V isage via user studies and demonstrate that users are able to make effective decisions with incrementally improving visualizations, especially compared to vanilla online-sampling based schemes.</abstract><doi>10.14778/3137628.3137637</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2150-8097
ispartof Proceedings of the VLDB Endowment, 2017-08, Vol.10 (11), p.1262-1273
issn 2150-8097
2150-8097
language eng
recordid cdi_crossref_primary_10_14778_3137628_3137637
source ACM Digital Library Complete
title I've seen "enough": incrementally improving visualizations to support rapid decision making
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A41%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=I've%20seen%20%22enough%22:%20incrementally%20improving%20visualizations%20to%20support%20rapid%20decision%20making&rft.jtitle=Proceedings%20of%20the%20VLDB%20Endowment&rft.au=Rahman,%20Sajjadur&rft.date=2017-08&rft.volume=10&rft.issue=11&rft.spage=1262&rft.epage=1273&rft.pages=1262-1273&rft.issn=2150-8097&rft.eissn=2150-8097&rft_id=info:doi/10.14778/3137628.3137637&rft_dat=%3Ccrossref%3E10_14778_3137628_3137637%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true