ActiveClean: interactive data cleaning for statistical modeling

Analysts often clean dirty data iteratively--cleaning some data, executing the analysis, and then cleaning more data based on the results. We explore the iterative cleaning process in the context of statistical model training, which is an increasingly popular form of data analytics. We propose Activ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the VLDB Endowment 2016-08, Vol.9 (12), p.948-959
Hauptverfasser: Krishnan, Sanjay, Wang, Jiannan, Wu, Eugene, Franklin, Michael J., Goldberg, Ken
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 959
container_issue 12
container_start_page 948
container_title Proceedings of the VLDB Endowment
container_volume 9
creator Krishnan, Sanjay
Wang, Jiannan
Wu, Eugene
Franklin, Michael J.
Goldberg, Ken
description Analysts often clean dirty data iteratively--cleaning some data, executing the analysis, and then cleaning more data based on the results. We explore the iterative cleaning process in the context of statistical model training, which is an increasingly popular form of data analytics. We propose ActiveClean, which allows for progressive and iterative cleaning in statistical modeling problems while preserving convergence guarantees. ActiveClean supports an important class of models called convex loss models (e.g., linear regression and SVMs), and prioritizes cleaning those records likely to affect the results. We evaluate ActiveClean on five real-world datasets UCI Adult, UCI EEG, MNIST, IMDB, and Dollars For Docs with both real and synthetic errors. The results show that our proposed optimizations can improve model accuracy by up-to 2.5x for the same amount of data cleaned. Furthermore for a fixed cleaning budget and on all real dirty datasets, ActiveClean returns more accurate models than uniform sampling and Active Learning.
doi_str_mv 10.14778/2994509.2994514
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_14778_2994509_2994514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_14778_2994509_2994514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c196t-5de99236be2e5e74524d42df31c85d1f1f2a8a7d4cf1d5b7df3f10686f94270e3</originalsourceid><addsrcrecordid>eNpNj8sKwjAURIMoqNW9P1G9N02aZCnFFwhudB1icgOKLxoR_HtfXbg6AwMzHMZGCGMUSukJN0ZIMOMvUbRYj6OEXINR7b_cZf2UjgClLlH3WDb198ODqhO5y4B1ojslGjbM2G4-21bLfL1ZrKrpOvdoynsuAxnDi3JPnCQpIbkIgodYoNcyYMTInXYqCB8xyL16NxE_f9EIroCKjMFv19fXlGqK9lYfzq5-WgT7lbGNjG1kihdwSDpd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ActiveClean: interactive data cleaning for statistical modeling</title><source>ACM Digital Library Complete</source><creator>Krishnan, Sanjay ; Wang, Jiannan ; Wu, Eugene ; Franklin, Michael J. ; Goldberg, Ken</creator><creatorcontrib>Krishnan, Sanjay ; Wang, Jiannan ; Wu, Eugene ; Franklin, Michael J. ; Goldberg, Ken</creatorcontrib><description>Analysts often clean dirty data iteratively--cleaning some data, executing the analysis, and then cleaning more data based on the results. We explore the iterative cleaning process in the context of statistical model training, which is an increasingly popular form of data analytics. We propose ActiveClean, which allows for progressive and iterative cleaning in statistical modeling problems while preserving convergence guarantees. ActiveClean supports an important class of models called convex loss models (e.g., linear regression and SVMs), and prioritizes cleaning those records likely to affect the results. We evaluate ActiveClean on five real-world datasets UCI Adult, UCI EEG, MNIST, IMDB, and Dollars For Docs with both real and synthetic errors. The results show that our proposed optimizations can improve model accuracy by up-to 2.5x for the same amount of data cleaned. Furthermore for a fixed cleaning budget and on all real dirty datasets, ActiveClean returns more accurate models than uniform sampling and Active Learning.</description><identifier>ISSN: 2150-8097</identifier><identifier>EISSN: 2150-8097</identifier><identifier>DOI: 10.14778/2994509.2994514</identifier><language>eng</language><ispartof>Proceedings of the VLDB Endowment, 2016-08, Vol.9 (12), p.948-959</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c196t-5de99236be2e5e74524d42df31c85d1f1f2a8a7d4cf1d5b7df3f10686f94270e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Krishnan, Sanjay</creatorcontrib><creatorcontrib>Wang, Jiannan</creatorcontrib><creatorcontrib>Wu, Eugene</creatorcontrib><creatorcontrib>Franklin, Michael J.</creatorcontrib><creatorcontrib>Goldberg, Ken</creatorcontrib><title>ActiveClean: interactive data cleaning for statistical modeling</title><title>Proceedings of the VLDB Endowment</title><description>Analysts often clean dirty data iteratively--cleaning some data, executing the analysis, and then cleaning more data based on the results. We explore the iterative cleaning process in the context of statistical model training, which is an increasingly popular form of data analytics. We propose ActiveClean, which allows for progressive and iterative cleaning in statistical modeling problems while preserving convergence guarantees. ActiveClean supports an important class of models called convex loss models (e.g., linear regression and SVMs), and prioritizes cleaning those records likely to affect the results. We evaluate ActiveClean on five real-world datasets UCI Adult, UCI EEG, MNIST, IMDB, and Dollars For Docs with both real and synthetic errors. The results show that our proposed optimizations can improve model accuracy by up-to 2.5x for the same amount of data cleaned. Furthermore for a fixed cleaning budget and on all real dirty datasets, ActiveClean returns more accurate models than uniform sampling and Active Learning.</description><issn>2150-8097</issn><issn>2150-8097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpNj8sKwjAURIMoqNW9P1G9N02aZCnFFwhudB1icgOKLxoR_HtfXbg6AwMzHMZGCGMUSukJN0ZIMOMvUbRYj6OEXINR7b_cZf2UjgClLlH3WDb198ODqhO5y4B1ojslGjbM2G4-21bLfL1ZrKrpOvdoynsuAxnDi3JPnCQpIbkIgodYoNcyYMTInXYqCB8xyL16NxE_f9EIroCKjMFv19fXlGqK9lYfzq5-WgT7lbGNjG1kihdwSDpd</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Krishnan, Sanjay</creator><creator>Wang, Jiannan</creator><creator>Wu, Eugene</creator><creator>Franklin, Michael J.</creator><creator>Goldberg, Ken</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160801</creationdate><title>ActiveClean</title><author>Krishnan, Sanjay ; Wang, Jiannan ; Wu, Eugene ; Franklin, Michael J. ; Goldberg, Ken</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c196t-5de99236be2e5e74524d42df31c85d1f1f2a8a7d4cf1d5b7df3f10686f94270e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krishnan, Sanjay</creatorcontrib><creatorcontrib>Wang, Jiannan</creatorcontrib><creatorcontrib>Wu, Eugene</creatorcontrib><creatorcontrib>Franklin, Michael J.</creatorcontrib><creatorcontrib>Goldberg, Ken</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the VLDB Endowment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krishnan, Sanjay</au><au>Wang, Jiannan</au><au>Wu, Eugene</au><au>Franklin, Michael J.</au><au>Goldberg, Ken</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ActiveClean: interactive data cleaning for statistical modeling</atitle><jtitle>Proceedings of the VLDB Endowment</jtitle><date>2016-08-01</date><risdate>2016</risdate><volume>9</volume><issue>12</issue><spage>948</spage><epage>959</epage><pages>948-959</pages><issn>2150-8097</issn><eissn>2150-8097</eissn><abstract>Analysts often clean dirty data iteratively--cleaning some data, executing the analysis, and then cleaning more data based on the results. We explore the iterative cleaning process in the context of statistical model training, which is an increasingly popular form of data analytics. We propose ActiveClean, which allows for progressive and iterative cleaning in statistical modeling problems while preserving convergence guarantees. ActiveClean supports an important class of models called convex loss models (e.g., linear regression and SVMs), and prioritizes cleaning those records likely to affect the results. We evaluate ActiveClean on five real-world datasets UCI Adult, UCI EEG, MNIST, IMDB, and Dollars For Docs with both real and synthetic errors. The results show that our proposed optimizations can improve model accuracy by up-to 2.5x for the same amount of data cleaned. Furthermore for a fixed cleaning budget and on all real dirty datasets, ActiveClean returns more accurate models than uniform sampling and Active Learning.</abstract><doi>10.14778/2994509.2994514</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2150-8097
ispartof Proceedings of the VLDB Endowment, 2016-08, Vol.9 (12), p.948-959
issn 2150-8097
2150-8097
language eng
recordid cdi_crossref_primary_10_14778_2994509_2994514
source ACM Digital Library Complete
title ActiveClean: interactive data cleaning for statistical modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T23%3A57%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ActiveClean:%20interactive%20data%20cleaning%20for%20statistical%20modeling&rft.jtitle=Proceedings%20of%20the%20VLDB%20Endowment&rft.au=Krishnan,%20Sanjay&rft.date=2016-08-01&rft.volume=9&rft.issue=12&rft.spage=948&rft.epage=959&rft.pages=948-959&rft.issn=2150-8097&rft.eissn=2150-8097&rft_id=info:doi/10.14778/2994509.2994514&rft_dat=%3Ccrossref%3E10_14778_2994509_2994514%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true