In-memory performance for big data

When a working set fits into memory, the overhead imposed by the buffer pool renders traditional databases non-competitive with in-memory designs that sacrifice the benefits of a buffer pool. However, despite the large memory available with modern hardware, data skew, shifting workloads, and complex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the VLDB Endowment 2014-09, Vol.8 (1), p.37-48
Hauptverfasser: Graefe, Goetz, Volos, Haris, Kimura, Hideaki, Kuno, Harumi, Tucek, Joseph, Lillibridge, Mark, Veitch, Alistair
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 48
container_issue 1
container_start_page 37
container_title Proceedings of the VLDB Endowment
container_volume 8
creator Graefe, Goetz
Volos, Haris
Kimura, Hideaki
Kuno, Harumi
Tucek, Joseph
Lillibridge, Mark
Veitch, Alistair
description When a working set fits into memory, the overhead imposed by the buffer pool renders traditional databases non-competitive with in-memory designs that sacrifice the benefits of a buffer pool. However, despite the large memory available with modern hardware, data skew, shifting workloads, and complex mixed workloads make it difficult to guarantee that a working set will fit in memory. Hence, some recent work has focused on enabling in-memory databases to protect performance when the working data set almost fits in memory. Contrary to those prior efforts, we enable buffer pool designs to match in-memory performance while supporting the "big data" workloads that continue to require secondary storage, thus providing the best of both worlds. We introduce here a novel buffer pool design that adapts pointer swizzling for references between system objects (as opposed to application objects), and uses it to practically eliminate buffer pool overheads for memoryresident data. Our implementation and experimental evaluation demonstrate that we achieve graceful performance degradation when the working set grows to exceed the buffer pool size, and graceful improvement when the working set shrinks towards and below the memory and buffer pool sizes.
doi_str_mv 10.14778/2735461.2735465
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_14778_2735461_2735465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_14778_2735461_2735465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-570657a457dbd0e4e370c06d02bc4c167e2e2a8d9573ad7d053e982d601ce3f53</originalsourceid><addsrcrecordid>eNpNjz1vwjAUAC1UJCh07xh1N33-eH7OWCEoSEhd2jly7JeKqiHIZuHftyoZOt1NJ50QjwpWyhL5Z00GrVOrG3Ei5lohSA813f3zmbgv5QvAeaf8XDztT7LnfsjX6sy5G3IfTpGrX6na42eVwiUsxbQL34UfRi7Ex3bzvt7Jw9vrfv1ykNGgukgkcEjBIqU2AVs2BBFcAt1GG5Uj1qyDTzWSCYkSoOHa6-RARTYdmoWAWzfmoZTMXXPOxz7ka6Og-XtsxseRaH4AJqdCQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>In-memory performance for big data</title><source>ACM Digital Library Complete</source><creator>Graefe, Goetz ; Volos, Haris ; Kimura, Hideaki ; Kuno, Harumi ; Tucek, Joseph ; Lillibridge, Mark ; Veitch, Alistair</creator><creatorcontrib>Graefe, Goetz ; Volos, Haris ; Kimura, Hideaki ; Kuno, Harumi ; Tucek, Joseph ; Lillibridge, Mark ; Veitch, Alistair</creatorcontrib><description>When a working set fits into memory, the overhead imposed by the buffer pool renders traditional databases non-competitive with in-memory designs that sacrifice the benefits of a buffer pool. However, despite the large memory available with modern hardware, data skew, shifting workloads, and complex mixed workloads make it difficult to guarantee that a working set will fit in memory. Hence, some recent work has focused on enabling in-memory databases to protect performance when the working data set almost fits in memory. Contrary to those prior efforts, we enable buffer pool designs to match in-memory performance while supporting the "big data" workloads that continue to require secondary storage, thus providing the best of both worlds. We introduce here a novel buffer pool design that adapts pointer swizzling for references between system objects (as opposed to application objects), and uses it to practically eliminate buffer pool overheads for memoryresident data. Our implementation and experimental evaluation demonstrate that we achieve graceful performance degradation when the working set grows to exceed the buffer pool size, and graceful improvement when the working set shrinks towards and below the memory and buffer pool sizes.</description><identifier>ISSN: 2150-8097</identifier><identifier>EISSN: 2150-8097</identifier><identifier>DOI: 10.14778/2735461.2735465</identifier><language>eng</language><ispartof>Proceedings of the VLDB Endowment, 2014-09, Vol.8 (1), p.37-48</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-570657a457dbd0e4e370c06d02bc4c167e2e2a8d9573ad7d053e982d601ce3f53</citedby><cites>FETCH-LOGICAL-c351t-570657a457dbd0e4e370c06d02bc4c167e2e2a8d9573ad7d053e982d601ce3f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Graefe, Goetz</creatorcontrib><creatorcontrib>Volos, Haris</creatorcontrib><creatorcontrib>Kimura, Hideaki</creatorcontrib><creatorcontrib>Kuno, Harumi</creatorcontrib><creatorcontrib>Tucek, Joseph</creatorcontrib><creatorcontrib>Lillibridge, Mark</creatorcontrib><creatorcontrib>Veitch, Alistair</creatorcontrib><title>In-memory performance for big data</title><title>Proceedings of the VLDB Endowment</title><description>When a working set fits into memory, the overhead imposed by the buffer pool renders traditional databases non-competitive with in-memory designs that sacrifice the benefits of a buffer pool. However, despite the large memory available with modern hardware, data skew, shifting workloads, and complex mixed workloads make it difficult to guarantee that a working set will fit in memory. Hence, some recent work has focused on enabling in-memory databases to protect performance when the working data set almost fits in memory. Contrary to those prior efforts, we enable buffer pool designs to match in-memory performance while supporting the "big data" workloads that continue to require secondary storage, thus providing the best of both worlds. We introduce here a novel buffer pool design that adapts pointer swizzling for references between system objects (as opposed to application objects), and uses it to practically eliminate buffer pool overheads for memoryresident data. Our implementation and experimental evaluation demonstrate that we achieve graceful performance degradation when the working set grows to exceed the buffer pool size, and graceful improvement when the working set shrinks towards and below the memory and buffer pool sizes.</description><issn>2150-8097</issn><issn>2150-8097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpNjz1vwjAUAC1UJCh07xh1N33-eH7OWCEoSEhd2jly7JeKqiHIZuHftyoZOt1NJ50QjwpWyhL5Z00GrVOrG3Ei5lohSA813f3zmbgv5QvAeaf8XDztT7LnfsjX6sy5G3IfTpGrX6na42eVwiUsxbQL34UfRi7Ex3bzvt7Jw9vrfv1ykNGgukgkcEjBIqU2AVs2BBFcAt1GG5Uj1qyDTzWSCYkSoOHa6-RARTYdmoWAWzfmoZTMXXPOxz7ka6Og-XtsxseRaH4AJqdCQw</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Graefe, Goetz</creator><creator>Volos, Haris</creator><creator>Kimura, Hideaki</creator><creator>Kuno, Harumi</creator><creator>Tucek, Joseph</creator><creator>Lillibridge, Mark</creator><creator>Veitch, Alistair</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140901</creationdate><title>In-memory performance for big data</title><author>Graefe, Goetz ; Volos, Haris ; Kimura, Hideaki ; Kuno, Harumi ; Tucek, Joseph ; Lillibridge, Mark ; Veitch, Alistair</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-570657a457dbd0e4e370c06d02bc4c167e2e2a8d9573ad7d053e982d601ce3f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Graefe, Goetz</creatorcontrib><creatorcontrib>Volos, Haris</creatorcontrib><creatorcontrib>Kimura, Hideaki</creatorcontrib><creatorcontrib>Kuno, Harumi</creatorcontrib><creatorcontrib>Tucek, Joseph</creatorcontrib><creatorcontrib>Lillibridge, Mark</creatorcontrib><creatorcontrib>Veitch, Alistair</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the VLDB Endowment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Graefe, Goetz</au><au>Volos, Haris</au><au>Kimura, Hideaki</au><au>Kuno, Harumi</au><au>Tucek, Joseph</au><au>Lillibridge, Mark</au><au>Veitch, Alistair</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-memory performance for big data</atitle><jtitle>Proceedings of the VLDB Endowment</jtitle><date>2014-09-01</date><risdate>2014</risdate><volume>8</volume><issue>1</issue><spage>37</spage><epage>48</epage><pages>37-48</pages><issn>2150-8097</issn><eissn>2150-8097</eissn><abstract>When a working set fits into memory, the overhead imposed by the buffer pool renders traditional databases non-competitive with in-memory designs that sacrifice the benefits of a buffer pool. However, despite the large memory available with modern hardware, data skew, shifting workloads, and complex mixed workloads make it difficult to guarantee that a working set will fit in memory. Hence, some recent work has focused on enabling in-memory databases to protect performance when the working data set almost fits in memory. Contrary to those prior efforts, we enable buffer pool designs to match in-memory performance while supporting the "big data" workloads that continue to require secondary storage, thus providing the best of both worlds. We introduce here a novel buffer pool design that adapts pointer swizzling for references between system objects (as opposed to application objects), and uses it to practically eliminate buffer pool overheads for memoryresident data. Our implementation and experimental evaluation demonstrate that we achieve graceful performance degradation when the working set grows to exceed the buffer pool size, and graceful improvement when the working set shrinks towards and below the memory and buffer pool sizes.</abstract><doi>10.14778/2735461.2735465</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2150-8097
ispartof Proceedings of the VLDB Endowment, 2014-09, Vol.8 (1), p.37-48
issn 2150-8097
2150-8097
language eng
recordid cdi_crossref_primary_10_14778_2735461_2735465
source ACM Digital Library Complete
title In-memory performance for big data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A44%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-memory%20performance%20for%20big%20data&rft.jtitle=Proceedings%20of%20the%20VLDB%20Endowment&rft.au=Graefe,%20Goetz&rft.date=2014-09-01&rft.volume=8&rft.issue=1&rft.spage=37&rft.epage=48&rft.pages=37-48&rft.issn=2150-8097&rft.eissn=2150-8097&rft_id=info:doi/10.14778/2735461.2735465&rft_dat=%3Ccrossref%3E10_14778_2735461_2735465%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true