Supporting user-defined functions on uncertain data
Uncertain data management has become crucial in many sensing and scientific applications. As user-defined functions (UDFs) become widely used in these applications, an important task is to capture result uncertainty for queries that evaluate UDFs on uncertain data. In this work, we provide a general...
Gespeichert in:
Veröffentlicht in: | Proceedings of the VLDB Endowment 2013-04, Vol.6 (6), p.469-480 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 480 |
---|---|
container_issue | 6 |
container_start_page | 469 |
container_title | Proceedings of the VLDB Endowment |
container_volume | 6 |
creator | Tran, Thanh T. L. Diao, Yanlei Sutton, Charles Liu, Anna |
description | Uncertain data management has become crucial in many sensing and scientific applications. As user-defined functions (UDFs) become widely used in these applications, an important task is to capture result uncertainty for queries that evaluate UDFs on uncertain data. In this work, we provide a general framework for supporting UDFs on uncertain data. Specifically, we propose a learning approach based on Gaussian processes (GPs) to compute approximate output distributions of a UDF when evaluated on uncertain input, with guaranteed error bounds. We also devise an online algorithm to compute such output distributions, which employs a suite of optimizations to improve accuracy and performance. Our evaluation using both real-world and synthetic functions shows that our proposed GP approach can outperform the state-of-the-art sampling approach with up to two orders of magnitude improvement for a variety of UDFs. |
doi_str_mv | 10.14778/2536336.2536347 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_14778_2536336_2536347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_14778_2536336_2536347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c238t-ea361e29ae32480c1333072407db6f3af2e5976e81b837704192992c4bb1398e3</originalsourceid><addsrcrecordid>eNpNj8tKxDAUQIMoOI7uXfYHOt7kpnksZfAFAy7UdUnTG4loWpJ04d8rYxeuzlkdOIxdc9hxqbW5ER0qRLU7UuoTthG8g9aA1af__JxdlPIBoIziZsPwZZnnKdeY3pulUG5HCjHR2IQl-RqnVJopNb9OubqYmtFVd8nOgvssdLVyy97u7173j-3h-eFpf3tovUBTW3KoOAnrCIU04DkighYS9DiogC4I6qxWZPhgUGuQ3AprhZfDwNEawi2Dv67PUymZQj_n-OXyd8-hP07363S_TuMPJMdIew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Supporting user-defined functions on uncertain data</title><source>ACM Digital Library Complete</source><creator>Tran, Thanh T. L. ; Diao, Yanlei ; Sutton, Charles ; Liu, Anna</creator><creatorcontrib>Tran, Thanh T. L. ; Diao, Yanlei ; Sutton, Charles ; Liu, Anna</creatorcontrib><description>Uncertain data management has become crucial in many sensing and scientific applications. As user-defined functions (UDFs) become widely used in these applications, an important task is to capture result uncertainty for queries that evaluate UDFs on uncertain data. In this work, we provide a general framework for supporting UDFs on uncertain data. Specifically, we propose a learning approach based on Gaussian processes (GPs) to compute approximate output distributions of a UDF when evaluated on uncertain input, with guaranteed error bounds. We also devise an online algorithm to compute such output distributions, which employs a suite of optimizations to improve accuracy and performance. Our evaluation using both real-world and synthetic functions shows that our proposed GP approach can outperform the state-of-the-art sampling approach with up to two orders of magnitude improvement for a variety of UDFs.</description><identifier>ISSN: 2150-8097</identifier><identifier>EISSN: 2150-8097</identifier><identifier>DOI: 10.14778/2536336.2536347</identifier><language>eng</language><ispartof>Proceedings of the VLDB Endowment, 2013-04, Vol.6 (6), p.469-480</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c238t-ea361e29ae32480c1333072407db6f3af2e5976e81b837704192992c4bb1398e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Tran, Thanh T. L.</creatorcontrib><creatorcontrib>Diao, Yanlei</creatorcontrib><creatorcontrib>Sutton, Charles</creatorcontrib><creatorcontrib>Liu, Anna</creatorcontrib><title>Supporting user-defined functions on uncertain data</title><title>Proceedings of the VLDB Endowment</title><description>Uncertain data management has become crucial in many sensing and scientific applications. As user-defined functions (UDFs) become widely used in these applications, an important task is to capture result uncertainty for queries that evaluate UDFs on uncertain data. In this work, we provide a general framework for supporting UDFs on uncertain data. Specifically, we propose a learning approach based on Gaussian processes (GPs) to compute approximate output distributions of a UDF when evaluated on uncertain input, with guaranteed error bounds. We also devise an online algorithm to compute such output distributions, which employs a suite of optimizations to improve accuracy and performance. Our evaluation using both real-world and synthetic functions shows that our proposed GP approach can outperform the state-of-the-art sampling approach with up to two orders of magnitude improvement for a variety of UDFs.</description><issn>2150-8097</issn><issn>2150-8097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpNj8tKxDAUQIMoOI7uXfYHOt7kpnksZfAFAy7UdUnTG4loWpJ04d8rYxeuzlkdOIxdc9hxqbW5ER0qRLU7UuoTthG8g9aA1af__JxdlPIBoIziZsPwZZnnKdeY3pulUG5HCjHR2IQl-RqnVJopNb9OubqYmtFVd8nOgvssdLVyy97u7173j-3h-eFpf3tovUBTW3KoOAnrCIU04DkighYS9DiogC4I6qxWZPhgUGuQ3AprhZfDwNEawi2Dv67PUymZQj_n-OXyd8-hP07363S_TuMPJMdIew</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Tran, Thanh T. L.</creator><creator>Diao, Yanlei</creator><creator>Sutton, Charles</creator><creator>Liu, Anna</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130401</creationdate><title>Supporting user-defined functions on uncertain data</title><author>Tran, Thanh T. L. ; Diao, Yanlei ; Sutton, Charles ; Liu, Anna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c238t-ea361e29ae32480c1333072407db6f3af2e5976e81b837704192992c4bb1398e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tran, Thanh T. L.</creatorcontrib><creatorcontrib>Diao, Yanlei</creatorcontrib><creatorcontrib>Sutton, Charles</creatorcontrib><creatorcontrib>Liu, Anna</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the VLDB Endowment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tran, Thanh T. L.</au><au>Diao, Yanlei</au><au>Sutton, Charles</au><au>Liu, Anna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supporting user-defined functions on uncertain data</atitle><jtitle>Proceedings of the VLDB Endowment</jtitle><date>2013-04-01</date><risdate>2013</risdate><volume>6</volume><issue>6</issue><spage>469</spage><epage>480</epage><pages>469-480</pages><issn>2150-8097</issn><eissn>2150-8097</eissn><abstract>Uncertain data management has become crucial in many sensing and scientific applications. As user-defined functions (UDFs) become widely used in these applications, an important task is to capture result uncertainty for queries that evaluate UDFs on uncertain data. In this work, we provide a general framework for supporting UDFs on uncertain data. Specifically, we propose a learning approach based on Gaussian processes (GPs) to compute approximate output distributions of a UDF when evaluated on uncertain input, with guaranteed error bounds. We also devise an online algorithm to compute such output distributions, which employs a suite of optimizations to improve accuracy and performance. Our evaluation using both real-world and synthetic functions shows that our proposed GP approach can outperform the state-of-the-art sampling approach with up to two orders of magnitude improvement for a variety of UDFs.</abstract><doi>10.14778/2536336.2536347</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2150-8097 |
ispartof | Proceedings of the VLDB Endowment, 2013-04, Vol.6 (6), p.469-480 |
issn | 2150-8097 2150-8097 |
language | eng |
recordid | cdi_crossref_primary_10_14778_2536336_2536347 |
source | ACM Digital Library Complete |
title | Supporting user-defined functions on uncertain data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T17%3A22%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supporting%20user-defined%20functions%20on%20uncertain%20data&rft.jtitle=Proceedings%20of%20the%20VLDB%20Endowment&rft.au=Tran,%20Thanh%20T.%20L.&rft.date=2013-04-01&rft.volume=6&rft.issue=6&rft.spage=469&rft.epage=480&rft.pages=469-480&rft.issn=2150-8097&rft.eissn=2150-8097&rft_id=info:doi/10.14778/2536336.2536347&rft_dat=%3Ccrossref%3E10_14778_2536336_2536347%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |