iRoad: a framework for scalable predictive query processing on road networks

This demo presents the iRoad framework for evaluating predictive queries on moving objects for road networks. The main promise of the iRoad system is to support a variety of common predictive queries including predictive point query, predictive range query, predictive KNN query, and predictive aggre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the VLDB Endowment 2013-08, Vol.6 (12), p.1262-1265
Hauptverfasser: Hendawi, Abdeltawab M., Bao, Jie, Mokbel, Mohamed F.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1265
container_issue 12
container_start_page 1262
container_title Proceedings of the VLDB Endowment
container_volume 6
creator Hendawi, Abdeltawab M.
Bao, Jie
Mokbel, Mohamed F.
description This demo presents the iRoad framework for evaluating predictive queries on moving objects for road networks. The main promise of the iRoad system is to support a variety of common predictive queries including predictive point query, predictive range query, predictive KNN query, and predictive aggregate query. The iRoad framework is equipped with a novel data structure, named reachability tree, employed to determine the reachable nodes for a moving object within a specified future time Τ. In fact, the reachability tree prunes the space around each object in order to significantly reduce the computation time. So, iRoad is able to scale up to handle real road networks with millions of nodes, and it can process heavy workloads on large numbers of moving objects. During the demo, audience will be able to interact with iRoad through a well designed Graphical User Interface to issue different types of predictive queries on a real road network, to obtain the predictive heatmap of the area of interest, to follow the creation and the dynamic update of the reachability tree around a specific moving object, and finally to examine the system efficiency and scalability.
doi_str_mv 10.14778/2536274.2536291
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_14778_2536274_2536291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_14778_2536274_2536291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c196t-1a8383a07b7c7bc49295b1de5a8a8fb7e026bcfe263ba6b82acc25d2801af44f3</originalsourceid><addsrcrecordid>eNpNz01rQjEQheFQKtSq-_6Ja2cmX5NlEbUFQSh1HSa5CSgtlptu_PeC3kVX71kdeJR6QVii8Z5fyWpH3ixvDfigpoQWOobgH__tJ_Xc2gnAsUOeqsnx8yz9XE2qfLeyGDtTh836a_Xe7fbbj9XbrssY3F-Hwpq1gE8--5RNoGAT9sUKC9fkC5BLuRZyOolLTJIz2Z4YUKoxVc8U3H_zcG5tKDX-DscfGS4RId4YcWTEkaGvvCM4XA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>iRoad: a framework for scalable predictive query processing on road networks</title><source>ACM Digital Library Complete</source><creator>Hendawi, Abdeltawab M. ; Bao, Jie ; Mokbel, Mohamed F.</creator><creatorcontrib>Hendawi, Abdeltawab M. ; Bao, Jie ; Mokbel, Mohamed F.</creatorcontrib><description>This demo presents the iRoad framework for evaluating predictive queries on moving objects for road networks. The main promise of the iRoad system is to support a variety of common predictive queries including predictive point query, predictive range query, predictive KNN query, and predictive aggregate query. The iRoad framework is equipped with a novel data structure, named reachability tree, employed to determine the reachable nodes for a moving object within a specified future time Τ. In fact, the reachability tree prunes the space around each object in order to significantly reduce the computation time. So, iRoad is able to scale up to handle real road networks with millions of nodes, and it can process heavy workloads on large numbers of moving objects. During the demo, audience will be able to interact with iRoad through a well designed Graphical User Interface to issue different types of predictive queries on a real road network, to obtain the predictive heatmap of the area of interest, to follow the creation and the dynamic update of the reachability tree around a specific moving object, and finally to examine the system efficiency and scalability.</description><identifier>ISSN: 2150-8097</identifier><identifier>EISSN: 2150-8097</identifier><identifier>DOI: 10.14778/2536274.2536291</identifier><language>eng</language><ispartof>Proceedings of the VLDB Endowment, 2013-08, Vol.6 (12), p.1262-1265</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c196t-1a8383a07b7c7bc49295b1de5a8a8fb7e026bcfe263ba6b82acc25d2801af44f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Hendawi, Abdeltawab M.</creatorcontrib><creatorcontrib>Bao, Jie</creatorcontrib><creatorcontrib>Mokbel, Mohamed F.</creatorcontrib><title>iRoad: a framework for scalable predictive query processing on road networks</title><title>Proceedings of the VLDB Endowment</title><description>This demo presents the iRoad framework for evaluating predictive queries on moving objects for road networks. The main promise of the iRoad system is to support a variety of common predictive queries including predictive point query, predictive range query, predictive KNN query, and predictive aggregate query. The iRoad framework is equipped with a novel data structure, named reachability tree, employed to determine the reachable nodes for a moving object within a specified future time Τ. In fact, the reachability tree prunes the space around each object in order to significantly reduce the computation time. So, iRoad is able to scale up to handle real road networks with millions of nodes, and it can process heavy workloads on large numbers of moving objects. During the demo, audience will be able to interact with iRoad through a well designed Graphical User Interface to issue different types of predictive queries on a real road network, to obtain the predictive heatmap of the area of interest, to follow the creation and the dynamic update of the reachability tree around a specific moving object, and finally to examine the system efficiency and scalability.</description><issn>2150-8097</issn><issn>2150-8097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpNz01rQjEQheFQKtSq-_6Ja2cmX5NlEbUFQSh1HSa5CSgtlptu_PeC3kVX71kdeJR6QVii8Z5fyWpH3ixvDfigpoQWOobgH__tJ_Xc2gnAsUOeqsnx8yz9XE2qfLeyGDtTh836a_Xe7fbbj9XbrssY3F-Hwpq1gE8--5RNoGAT9sUKC9fkC5BLuRZyOolLTJIz2Z4YUKoxVc8U3H_zcG5tKDX-DscfGS4RId4YcWTEkaGvvCM4XA</recordid><startdate>20130828</startdate><enddate>20130828</enddate><creator>Hendawi, Abdeltawab M.</creator><creator>Bao, Jie</creator><creator>Mokbel, Mohamed F.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130828</creationdate><title>iRoad</title><author>Hendawi, Abdeltawab M. ; Bao, Jie ; Mokbel, Mohamed F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c196t-1a8383a07b7c7bc49295b1de5a8a8fb7e026bcfe263ba6b82acc25d2801af44f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hendawi, Abdeltawab M.</creatorcontrib><creatorcontrib>Bao, Jie</creatorcontrib><creatorcontrib>Mokbel, Mohamed F.</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the VLDB Endowment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hendawi, Abdeltawab M.</au><au>Bao, Jie</au><au>Mokbel, Mohamed F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>iRoad: a framework for scalable predictive query processing on road networks</atitle><jtitle>Proceedings of the VLDB Endowment</jtitle><date>2013-08-28</date><risdate>2013</risdate><volume>6</volume><issue>12</issue><spage>1262</spage><epage>1265</epage><pages>1262-1265</pages><issn>2150-8097</issn><eissn>2150-8097</eissn><abstract>This demo presents the iRoad framework for evaluating predictive queries on moving objects for road networks. The main promise of the iRoad system is to support a variety of common predictive queries including predictive point query, predictive range query, predictive KNN query, and predictive aggregate query. The iRoad framework is equipped with a novel data structure, named reachability tree, employed to determine the reachable nodes for a moving object within a specified future time Τ. In fact, the reachability tree prunes the space around each object in order to significantly reduce the computation time. So, iRoad is able to scale up to handle real road networks with millions of nodes, and it can process heavy workloads on large numbers of moving objects. During the demo, audience will be able to interact with iRoad through a well designed Graphical User Interface to issue different types of predictive queries on a real road network, to obtain the predictive heatmap of the area of interest, to follow the creation and the dynamic update of the reachability tree around a specific moving object, and finally to examine the system efficiency and scalability.</abstract><doi>10.14778/2536274.2536291</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2150-8097
ispartof Proceedings of the VLDB Endowment, 2013-08, Vol.6 (12), p.1262-1265
issn 2150-8097
2150-8097
language eng
recordid cdi_crossref_primary_10_14778_2536274_2536291
source ACM Digital Library Complete
title iRoad: a framework for scalable predictive query processing on road networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A28%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=iRoad:%20a%20framework%20for%20scalable%20predictive%20query%20processing%20on%20road%20networks&rft.jtitle=Proceedings%20of%20the%20VLDB%20Endowment&rft.au=Hendawi,%20Abdeltawab%20M.&rft.date=2013-08-28&rft.volume=6&rft.issue=12&rft.spage=1262&rft.epage=1265&rft.pages=1262-1265&rft.issn=2150-8097&rft.eissn=2150-8097&rft_id=info:doi/10.14778/2536274.2536291&rft_dat=%3Ccrossref%3E10_14778_2536274_2536291%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true