iRoad: a framework for scalable predictive query processing on road networks
This demo presents the iRoad framework for evaluating predictive queries on moving objects for road networks. The main promise of the iRoad system is to support a variety of common predictive queries including predictive point query, predictive range query, predictive KNN query, and predictive aggre...
Gespeichert in:
Veröffentlicht in: | Proceedings of the VLDB Endowment 2013-08, Vol.6 (12), p.1262-1265 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1265 |
---|---|
container_issue | 12 |
container_start_page | 1262 |
container_title | Proceedings of the VLDB Endowment |
container_volume | 6 |
creator | Hendawi, Abdeltawab M. Bao, Jie Mokbel, Mohamed F. |
description | This demo presents the iRoad framework for evaluating predictive queries on moving objects for road networks. The main promise of the iRoad system is to support a variety of common predictive queries including predictive point query, predictive range query, predictive KNN query, and predictive aggregate query. The iRoad framework is equipped with a novel data structure, named reachability tree, employed to determine the reachable nodes for a moving object within a specified future time Τ. In fact, the reachability tree prunes the space around each object in order to significantly reduce the computation time. So, iRoad is able to scale up to handle real road networks with millions of nodes, and it can process heavy workloads on large numbers of moving objects. During the demo, audience will be able to interact with iRoad through a well designed Graphical User Interface to issue different types of predictive queries on a real road network, to obtain the predictive heatmap of the area of interest, to follow the creation and the dynamic update of the reachability tree around a specific moving object, and finally to examine the system efficiency and scalability. |
doi_str_mv | 10.14778/2536274.2536291 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_14778_2536274_2536291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_14778_2536274_2536291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c196t-1a8383a07b7c7bc49295b1de5a8a8fb7e026bcfe263ba6b82acc25d2801af44f3</originalsourceid><addsrcrecordid>eNpNz01rQjEQheFQKtSq-_6Ja2cmX5NlEbUFQSh1HSa5CSgtlptu_PeC3kVX71kdeJR6QVii8Z5fyWpH3ixvDfigpoQWOobgH__tJ_Xc2gnAsUOeqsnx8yz9XE2qfLeyGDtTh836a_Xe7fbbj9XbrssY3F-Hwpq1gE8--5RNoGAT9sUKC9fkC5BLuRZyOolLTJIz2Z4YUKoxVc8U3H_zcG5tKDX-DscfGS4RId4YcWTEkaGvvCM4XA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>iRoad: a framework for scalable predictive query processing on road networks</title><source>ACM Digital Library Complete</source><creator>Hendawi, Abdeltawab M. ; Bao, Jie ; Mokbel, Mohamed F.</creator><creatorcontrib>Hendawi, Abdeltawab M. ; Bao, Jie ; Mokbel, Mohamed F.</creatorcontrib><description>This demo presents the iRoad framework for evaluating predictive queries on moving objects for road networks. The main promise of the iRoad system is to support a variety of common predictive queries including predictive point query, predictive range query, predictive KNN query, and predictive aggregate query. The iRoad framework is equipped with a novel data structure, named reachability tree, employed to determine the reachable nodes for a moving object within a specified future time Τ. In fact, the reachability tree prunes the space around each object in order to significantly reduce the computation time. So, iRoad is able to scale up to handle real road networks with millions of nodes, and it can process heavy workloads on large numbers of moving objects. During the demo, audience will be able to interact with iRoad through a well designed Graphical User Interface to issue different types of predictive queries on a real road network, to obtain the predictive heatmap of the area of interest, to follow the creation and the dynamic update of the reachability tree around a specific moving object, and finally to examine the system efficiency and scalability.</description><identifier>ISSN: 2150-8097</identifier><identifier>EISSN: 2150-8097</identifier><identifier>DOI: 10.14778/2536274.2536291</identifier><language>eng</language><ispartof>Proceedings of the VLDB Endowment, 2013-08, Vol.6 (12), p.1262-1265</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c196t-1a8383a07b7c7bc49295b1de5a8a8fb7e026bcfe263ba6b82acc25d2801af44f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Hendawi, Abdeltawab M.</creatorcontrib><creatorcontrib>Bao, Jie</creatorcontrib><creatorcontrib>Mokbel, Mohamed F.</creatorcontrib><title>iRoad: a framework for scalable predictive query processing on road networks</title><title>Proceedings of the VLDB Endowment</title><description>This demo presents the iRoad framework for evaluating predictive queries on moving objects for road networks. The main promise of the iRoad system is to support a variety of common predictive queries including predictive point query, predictive range query, predictive KNN query, and predictive aggregate query. The iRoad framework is equipped with a novel data structure, named reachability tree, employed to determine the reachable nodes for a moving object within a specified future time Τ. In fact, the reachability tree prunes the space around each object in order to significantly reduce the computation time. So, iRoad is able to scale up to handle real road networks with millions of nodes, and it can process heavy workloads on large numbers of moving objects. During the demo, audience will be able to interact with iRoad through a well designed Graphical User Interface to issue different types of predictive queries on a real road network, to obtain the predictive heatmap of the area of interest, to follow the creation and the dynamic update of the reachability tree around a specific moving object, and finally to examine the system efficiency and scalability.</description><issn>2150-8097</issn><issn>2150-8097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpNz01rQjEQheFQKtSq-_6Ja2cmX5NlEbUFQSh1HSa5CSgtlptu_PeC3kVX71kdeJR6QVii8Z5fyWpH3ixvDfigpoQWOobgH__tJ_Xc2gnAsUOeqsnx8yz9XE2qfLeyGDtTh836a_Xe7fbbj9XbrssY3F-Hwpq1gE8--5RNoGAT9sUKC9fkC5BLuRZyOolLTJIz2Z4YUKoxVc8U3H_zcG5tKDX-DscfGS4RId4YcWTEkaGvvCM4XA</recordid><startdate>20130828</startdate><enddate>20130828</enddate><creator>Hendawi, Abdeltawab M.</creator><creator>Bao, Jie</creator><creator>Mokbel, Mohamed F.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130828</creationdate><title>iRoad</title><author>Hendawi, Abdeltawab M. ; Bao, Jie ; Mokbel, Mohamed F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c196t-1a8383a07b7c7bc49295b1de5a8a8fb7e026bcfe263ba6b82acc25d2801af44f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hendawi, Abdeltawab M.</creatorcontrib><creatorcontrib>Bao, Jie</creatorcontrib><creatorcontrib>Mokbel, Mohamed F.</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the VLDB Endowment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hendawi, Abdeltawab M.</au><au>Bao, Jie</au><au>Mokbel, Mohamed F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>iRoad: a framework for scalable predictive query processing on road networks</atitle><jtitle>Proceedings of the VLDB Endowment</jtitle><date>2013-08-28</date><risdate>2013</risdate><volume>6</volume><issue>12</issue><spage>1262</spage><epage>1265</epage><pages>1262-1265</pages><issn>2150-8097</issn><eissn>2150-8097</eissn><abstract>This demo presents the iRoad framework for evaluating predictive queries on moving objects for road networks. The main promise of the iRoad system is to support a variety of common predictive queries including predictive point query, predictive range query, predictive KNN query, and predictive aggregate query. The iRoad framework is equipped with a novel data structure, named reachability tree, employed to determine the reachable nodes for a moving object within a specified future time Τ. In fact, the reachability tree prunes the space around each object in order to significantly reduce the computation time. So, iRoad is able to scale up to handle real road networks with millions of nodes, and it can process heavy workloads on large numbers of moving objects. During the demo, audience will be able to interact with iRoad through a well designed Graphical User Interface to issue different types of predictive queries on a real road network, to obtain the predictive heatmap of the area of interest, to follow the creation and the dynamic update of the reachability tree around a specific moving object, and finally to examine the system efficiency and scalability.</abstract><doi>10.14778/2536274.2536291</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2150-8097 |
ispartof | Proceedings of the VLDB Endowment, 2013-08, Vol.6 (12), p.1262-1265 |
issn | 2150-8097 2150-8097 |
language | eng |
recordid | cdi_crossref_primary_10_14778_2536274_2536291 |
source | ACM Digital Library Complete |
title | iRoad: a framework for scalable predictive query processing on road networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A28%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=iRoad:%20a%20framework%20for%20scalable%20predictive%20query%20processing%20on%20road%20networks&rft.jtitle=Proceedings%20of%20the%20VLDB%20Endowment&rft.au=Hendawi,%20Abdeltawab%20M.&rft.date=2013-08-28&rft.volume=6&rft.issue=12&rft.spage=1262&rft.epage=1265&rft.pages=1262-1265&rft.issn=2150-8097&rft.eissn=2150-8097&rft_id=info:doi/10.14778/2536274.2536291&rft_dat=%3Ccrossref%3E10_14778_2536274_2536291%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |