MOIST: a scalable and parallel moving object indexer with school tracking

Location-Based Service (LBS) is rapidly becoming the next ubiquitous technology for a wide range of mobile applications. To support applications that demand nearest-neighbor and history queries, an LBS spatial indexer must be able to efficiently update, query, archive and mine location records, whic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the VLDB Endowment 2012-08, Vol.5 (12), p.1838-1849
Hauptverfasser: Jiang, Junchen, Bao, Hongji, Chang, Edward Y., Li, Yuqian
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1849
container_issue 12
container_start_page 1838
container_title Proceedings of the VLDB Endowment
container_volume 5
creator Jiang, Junchen
Bao, Hongji
Chang, Edward Y.
Li, Yuqian
description Location-Based Service (LBS) is rapidly becoming the next ubiquitous technology for a wide range of mobile applications. To support applications that demand nearest-neighbor and history queries, an LBS spatial indexer must be able to efficiently update, query, archive and mine location records, which can be in contention with each other. In this work, we propose MOIST, whose baseline is a recursive spatial partitioning indexer built upon BigTable. To reduce update and query contention, MOIST groups nearby objects of similar trajectory into the same school, and keeps track of only the history of school leaders. This dynamic clustering scheme can eliminate redundant updates and hence reduce update latency. To improve history query processing, MOIST keeps some history data in memory, while it flushes aged data onto parallel disks in a locality-preserving way. Through experimental studies, we show that MOIST can support highly efficient nearest-neighbor and history queries and can scale well with an increasing number of users and update frequency.
doi_str_mv 10.14778/2367502.2367522
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_14778_2367502_2367522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_14778_2367502_2367522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c196t-76d8cac515aac84fbe9c50a5e1b8ab23f7f4221db8d560891c31ed490c5499943</originalsourceid><addsrcrecordid>eNpNz7kKAjEUheEgCq69LzF6b9abUsQNRizUOmQyCSiKMrHx7QWdwuo_1YGPsSnCDKUxNOdCGwV89i3nHTbgqKAgsKb7t_tsmPMVQJNGGrDe_rA7nsasl_wtx0nbETuvV6fltigPm91yURYBrX4VRtcUfFCovA8kUxVtUOBVxIp8xUUySXKOdUW10kAWg8BYSwtBSWutFCMGv9_QPHJuYnLP5nL3zdshuC_DtQzXMsQHc9g3dA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>MOIST: a scalable and parallel moving object indexer with school tracking</title><source>ACM Digital Library</source><creator>Jiang, Junchen ; Bao, Hongji ; Chang, Edward Y. ; Li, Yuqian</creator><creatorcontrib>Jiang, Junchen ; Bao, Hongji ; Chang, Edward Y. ; Li, Yuqian</creatorcontrib><description>Location-Based Service (LBS) is rapidly becoming the next ubiquitous technology for a wide range of mobile applications. To support applications that demand nearest-neighbor and history queries, an LBS spatial indexer must be able to efficiently update, query, archive and mine location records, which can be in contention with each other. In this work, we propose MOIST, whose baseline is a recursive spatial partitioning indexer built upon BigTable. To reduce update and query contention, MOIST groups nearby objects of similar trajectory into the same school, and keeps track of only the history of school leaders. This dynamic clustering scheme can eliminate redundant updates and hence reduce update latency. To improve history query processing, MOIST keeps some history data in memory, while it flushes aged data onto parallel disks in a locality-preserving way. Through experimental studies, we show that MOIST can support highly efficient nearest-neighbor and history queries and can scale well with an increasing number of users and update frequency.</description><identifier>ISSN: 2150-8097</identifier><identifier>EISSN: 2150-8097</identifier><identifier>DOI: 10.14778/2367502.2367522</identifier><language>eng</language><ispartof>Proceedings of the VLDB Endowment, 2012-08, Vol.5 (12), p.1838-1849</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c196t-76d8cac515aac84fbe9c50a5e1b8ab23f7f4221db8d560891c31ed490c5499943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jiang, Junchen</creatorcontrib><creatorcontrib>Bao, Hongji</creatorcontrib><creatorcontrib>Chang, Edward Y.</creatorcontrib><creatorcontrib>Li, Yuqian</creatorcontrib><title>MOIST: a scalable and parallel moving object indexer with school tracking</title><title>Proceedings of the VLDB Endowment</title><description>Location-Based Service (LBS) is rapidly becoming the next ubiquitous technology for a wide range of mobile applications. To support applications that demand nearest-neighbor and history queries, an LBS spatial indexer must be able to efficiently update, query, archive and mine location records, which can be in contention with each other. In this work, we propose MOIST, whose baseline is a recursive spatial partitioning indexer built upon BigTable. To reduce update and query contention, MOIST groups nearby objects of similar trajectory into the same school, and keeps track of only the history of school leaders. This dynamic clustering scheme can eliminate redundant updates and hence reduce update latency. To improve history query processing, MOIST keeps some history data in memory, while it flushes aged data onto parallel disks in a locality-preserving way. Through experimental studies, we show that MOIST can support highly efficient nearest-neighbor and history queries and can scale well with an increasing number of users and update frequency.</description><issn>2150-8097</issn><issn>2150-8097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpNz7kKAjEUheEgCq69LzF6b9abUsQNRizUOmQyCSiKMrHx7QWdwuo_1YGPsSnCDKUxNOdCGwV89i3nHTbgqKAgsKb7t_tsmPMVQJNGGrDe_rA7nsasl_wtx0nbETuvV6fltigPm91yURYBrX4VRtcUfFCovA8kUxVtUOBVxIp8xUUySXKOdUW10kAWg8BYSwtBSWutFCMGv9_QPHJuYnLP5nL3zdshuC_DtQzXMsQHc9g3dA</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Jiang, Junchen</creator><creator>Bao, Hongji</creator><creator>Chang, Edward Y.</creator><creator>Li, Yuqian</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120801</creationdate><title>MOIST</title><author>Jiang, Junchen ; Bao, Hongji ; Chang, Edward Y. ; Li, Yuqian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c196t-76d8cac515aac84fbe9c50a5e1b8ab23f7f4221db8d560891c31ed490c5499943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Junchen</creatorcontrib><creatorcontrib>Bao, Hongji</creatorcontrib><creatorcontrib>Chang, Edward Y.</creatorcontrib><creatorcontrib>Li, Yuqian</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the VLDB Endowment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Junchen</au><au>Bao, Hongji</au><au>Chang, Edward Y.</au><au>Li, Yuqian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MOIST: a scalable and parallel moving object indexer with school tracking</atitle><jtitle>Proceedings of the VLDB Endowment</jtitle><date>2012-08-01</date><risdate>2012</risdate><volume>5</volume><issue>12</issue><spage>1838</spage><epage>1849</epage><pages>1838-1849</pages><issn>2150-8097</issn><eissn>2150-8097</eissn><abstract>Location-Based Service (LBS) is rapidly becoming the next ubiquitous technology for a wide range of mobile applications. To support applications that demand nearest-neighbor and history queries, an LBS spatial indexer must be able to efficiently update, query, archive and mine location records, which can be in contention with each other. In this work, we propose MOIST, whose baseline is a recursive spatial partitioning indexer built upon BigTable. To reduce update and query contention, MOIST groups nearby objects of similar trajectory into the same school, and keeps track of only the history of school leaders. This dynamic clustering scheme can eliminate redundant updates and hence reduce update latency. To improve history query processing, MOIST keeps some history data in memory, while it flushes aged data onto parallel disks in a locality-preserving way. Through experimental studies, we show that MOIST can support highly efficient nearest-neighbor and history queries and can scale well with an increasing number of users and update frequency.</abstract><doi>10.14778/2367502.2367522</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2150-8097
ispartof Proceedings of the VLDB Endowment, 2012-08, Vol.5 (12), p.1838-1849
issn 2150-8097
2150-8097
language eng
recordid cdi_crossref_primary_10_14778_2367502_2367522
source ACM Digital Library
title MOIST: a scalable and parallel moving object indexer with school tracking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T15%3A19%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MOIST:%20a%20scalable%20and%20parallel%20moving%20object%20indexer%20with%20school%20tracking&rft.jtitle=Proceedings%20of%20the%20VLDB%20Endowment&rft.au=Jiang,%20Junchen&rft.date=2012-08-01&rft.volume=5&rft.issue=12&rft.spage=1838&rft.epage=1849&rft.pages=1838-1849&rft.issn=2150-8097&rft.eissn=2150-8097&rft_id=info:doi/10.14778/2367502.2367522&rft_dat=%3Ccrossref%3E10_14778_2367502_2367522%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true