Automatic rule refinement for information extraction
Rule-based information extraction from text is increasingly being used to populate databases and to support structured queries on unstructured text. Specification of suitable information extraction rules requires considerable skill and standard practice is to refine rules iteratively, with substanti...
Gespeichert in:
Veröffentlicht in: | Proceedings of the VLDB Endowment 2010-09, Vol.3 (1-2), p.588-597 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 597 |
---|---|
container_issue | 1-2 |
container_start_page | 588 |
container_title | Proceedings of the VLDB Endowment |
container_volume | 3 |
creator | Liu, Bin Chiticariu, Laura Chu, Vivian Jagadish, H. V. Reiss, Frederick R. |
description | Rule-based information extraction from text is increasingly being used to populate databases and to support structured queries on unstructured text. Specification of suitable information extraction rules requires considerable skill and standard practice is to refine rules iteratively, with substantial effort. In this paper, we show that techniques developed in the context of data provenance, to determine the lineage of a tuple in a database, can be leveraged to assist in rule refinement. Specifically, given a set of extraction rules and correct and incorrect extracted data, we have developed a technique to suggest a ranked list of rule modifications that an expert rule specifier can consider. We implemented our technique in the
SystemT
information extraction system developed at IBM Research -- Almaden and experimentally demonstrate its effectiveness. |
doi_str_mv | 10.14778/1920841.1920916 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_14778_1920841_1920916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_14778_1920841_1920916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-629f9f519383424bdb177f5b18ec382553ac47cdf7bd5332433dc13083508c913</originalsourceid><addsrcrecordid>eNpNj81qwzAQhEVpoGmae496AadarWRJxxD6Ewj00p6FLEvgEttFUqB9-9qtD73MDAy7zEfIPbAdCKX0AxjOtIDd7AbqK7LmIFmlmVHX__INuc35g7Fa16DXROwvZexd6TxNl3OgKcRuCH0YCo1jot0w6VyPAw1fJTk_xzuyiu6cw3bxDXl_enw7vFSn1-fjYX-qPBdYqpqbaKIEgxoFF03bgFJRNqCDR82lROeF8m1UTSsRpxtsPSDTKJn2BnBD2N9fn8acp2n2M3W9S98WmP2ltgu1XajxB7FOSU0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Automatic rule refinement for information extraction</title><source>ACM Digital Library Complete</source><creator>Liu, Bin ; Chiticariu, Laura ; Chu, Vivian ; Jagadish, H. V. ; Reiss, Frederick R.</creator><creatorcontrib>Liu, Bin ; Chiticariu, Laura ; Chu, Vivian ; Jagadish, H. V. ; Reiss, Frederick R.</creatorcontrib><description>Rule-based information extraction from text is increasingly being used to populate databases and to support structured queries on unstructured text. Specification of suitable information extraction rules requires considerable skill and standard practice is to refine rules iteratively, with substantial effort. In this paper, we show that techniques developed in the context of data provenance, to determine the lineage of a tuple in a database, can be leveraged to assist in rule refinement. Specifically, given a set of extraction rules and correct and incorrect extracted data, we have developed a technique to suggest a ranked list of rule modifications that an expert rule specifier can consider. We implemented our technique in the
SystemT
information extraction system developed at IBM Research -- Almaden and experimentally demonstrate its effectiveness.</description><identifier>ISSN: 2150-8097</identifier><identifier>EISSN: 2150-8097</identifier><identifier>DOI: 10.14778/1920841.1920916</identifier><language>eng</language><ispartof>Proceedings of the VLDB Endowment, 2010-09, Vol.3 (1-2), p.588-597</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c243t-629f9f519383424bdb177f5b18ec382553ac47cdf7bd5332433dc13083508c913</citedby><cites>FETCH-LOGICAL-c243t-629f9f519383424bdb177f5b18ec382553ac47cdf7bd5332433dc13083508c913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Liu, Bin</creatorcontrib><creatorcontrib>Chiticariu, Laura</creatorcontrib><creatorcontrib>Chu, Vivian</creatorcontrib><creatorcontrib>Jagadish, H. V.</creatorcontrib><creatorcontrib>Reiss, Frederick R.</creatorcontrib><title>Automatic rule refinement for information extraction</title><title>Proceedings of the VLDB Endowment</title><description>Rule-based information extraction from text is increasingly being used to populate databases and to support structured queries on unstructured text. Specification of suitable information extraction rules requires considerable skill and standard practice is to refine rules iteratively, with substantial effort. In this paper, we show that techniques developed in the context of data provenance, to determine the lineage of a tuple in a database, can be leveraged to assist in rule refinement. Specifically, given a set of extraction rules and correct and incorrect extracted data, we have developed a technique to suggest a ranked list of rule modifications that an expert rule specifier can consider. We implemented our technique in the
SystemT
information extraction system developed at IBM Research -- Almaden and experimentally demonstrate its effectiveness.</description><issn>2150-8097</issn><issn>2150-8097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpNj81qwzAQhEVpoGmae496AadarWRJxxD6Ewj00p6FLEvgEttFUqB9-9qtD73MDAy7zEfIPbAdCKX0AxjOtIDd7AbqK7LmIFmlmVHX__INuc35g7Fa16DXROwvZexd6TxNl3OgKcRuCH0YCo1jot0w6VyPAw1fJTk_xzuyiu6cw3bxDXl_enw7vFSn1-fjYX-qPBdYqpqbaKIEgxoFF03bgFJRNqCDR82lROeF8m1UTSsRpxtsPSDTKJn2BnBD2N9fn8acp2n2M3W9S98WmP2ltgu1XajxB7FOSU0</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Liu, Bin</creator><creator>Chiticariu, Laura</creator><creator>Chu, Vivian</creator><creator>Jagadish, H. V.</creator><creator>Reiss, Frederick R.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100901</creationdate><title>Automatic rule refinement for information extraction</title><author>Liu, Bin ; Chiticariu, Laura ; Chu, Vivian ; Jagadish, H. V. ; Reiss, Frederick R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-629f9f519383424bdb177f5b18ec382553ac47cdf7bd5332433dc13083508c913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Bin</creatorcontrib><creatorcontrib>Chiticariu, Laura</creatorcontrib><creatorcontrib>Chu, Vivian</creatorcontrib><creatorcontrib>Jagadish, H. V.</creatorcontrib><creatorcontrib>Reiss, Frederick R.</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the VLDB Endowment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Bin</au><au>Chiticariu, Laura</au><au>Chu, Vivian</au><au>Jagadish, H. V.</au><au>Reiss, Frederick R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic rule refinement for information extraction</atitle><jtitle>Proceedings of the VLDB Endowment</jtitle><date>2010-09-01</date><risdate>2010</risdate><volume>3</volume><issue>1-2</issue><spage>588</spage><epage>597</epage><pages>588-597</pages><issn>2150-8097</issn><eissn>2150-8097</eissn><abstract>Rule-based information extraction from text is increasingly being used to populate databases and to support structured queries on unstructured text. Specification of suitable information extraction rules requires considerable skill and standard practice is to refine rules iteratively, with substantial effort. In this paper, we show that techniques developed in the context of data provenance, to determine the lineage of a tuple in a database, can be leveraged to assist in rule refinement. Specifically, given a set of extraction rules and correct and incorrect extracted data, we have developed a technique to suggest a ranked list of rule modifications that an expert rule specifier can consider. We implemented our technique in the
SystemT
information extraction system developed at IBM Research -- Almaden and experimentally demonstrate its effectiveness.</abstract><doi>10.14778/1920841.1920916</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2150-8097 |
ispartof | Proceedings of the VLDB Endowment, 2010-09, Vol.3 (1-2), p.588-597 |
issn | 2150-8097 2150-8097 |
language | eng |
recordid | cdi_crossref_primary_10_14778_1920841_1920916 |
source | ACM Digital Library Complete |
title | Automatic rule refinement for information extraction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A47%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20rule%20refinement%20for%20information%20extraction&rft.jtitle=Proceedings%20of%20the%20VLDB%20Endowment&rft.au=Liu,%20Bin&rft.date=2010-09-01&rft.volume=3&rft.issue=1-2&rft.spage=588&rft.epage=597&rft.pages=588-597&rft.issn=2150-8097&rft.eissn=2150-8097&rft_id=info:doi/10.14778/1920841.1920916&rft_dat=%3Ccrossref%3E10_14778_1920841_1920916%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |