Automatic rule refinement for information extraction

Rule-based information extraction from text is increasingly being used to populate databases and to support structured queries on unstructured text. Specification of suitable information extraction rules requires considerable skill and standard practice is to refine rules iteratively, with substanti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the VLDB Endowment 2010-09, Vol.3 (1-2), p.588-597
Hauptverfasser: Liu, Bin, Chiticariu, Laura, Chu, Vivian, Jagadish, H. V., Reiss, Frederick R.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 597
container_issue 1-2
container_start_page 588
container_title Proceedings of the VLDB Endowment
container_volume 3
creator Liu, Bin
Chiticariu, Laura
Chu, Vivian
Jagadish, H. V.
Reiss, Frederick R.
description Rule-based information extraction from text is increasingly being used to populate databases and to support structured queries on unstructured text. Specification of suitable information extraction rules requires considerable skill and standard practice is to refine rules iteratively, with substantial effort. In this paper, we show that techniques developed in the context of data provenance, to determine the lineage of a tuple in a database, can be leveraged to assist in rule refinement. Specifically, given a set of extraction rules and correct and incorrect extracted data, we have developed a technique to suggest a ranked list of rule modifications that an expert rule specifier can consider. We implemented our technique in the SystemT information extraction system developed at IBM Research -- Almaden and experimentally demonstrate its effectiveness.
doi_str_mv 10.14778/1920841.1920916
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_14778_1920841_1920916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_14778_1920841_1920916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-629f9f519383424bdb177f5b18ec382553ac47cdf7bd5332433dc13083508c913</originalsourceid><addsrcrecordid>eNpNj81qwzAQhEVpoGmae496AadarWRJxxD6Ewj00p6FLEvgEttFUqB9-9qtD73MDAy7zEfIPbAdCKX0AxjOtIDd7AbqK7LmIFmlmVHX__INuc35g7Fa16DXROwvZexd6TxNl3OgKcRuCH0YCo1jot0w6VyPAw1fJTk_xzuyiu6cw3bxDXl_enw7vFSn1-fjYX-qPBdYqpqbaKIEgxoFF03bgFJRNqCDR82lROeF8m1UTSsRpxtsPSDTKJn2BnBD2N9fn8acp2n2M3W9S98WmP2ltgu1XajxB7FOSU0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Automatic rule refinement for information extraction</title><source>ACM Digital Library Complete</source><creator>Liu, Bin ; Chiticariu, Laura ; Chu, Vivian ; Jagadish, H. V. ; Reiss, Frederick R.</creator><creatorcontrib>Liu, Bin ; Chiticariu, Laura ; Chu, Vivian ; Jagadish, H. V. ; Reiss, Frederick R.</creatorcontrib><description>Rule-based information extraction from text is increasingly being used to populate databases and to support structured queries on unstructured text. Specification of suitable information extraction rules requires considerable skill and standard practice is to refine rules iteratively, with substantial effort. In this paper, we show that techniques developed in the context of data provenance, to determine the lineage of a tuple in a database, can be leveraged to assist in rule refinement. Specifically, given a set of extraction rules and correct and incorrect extracted data, we have developed a technique to suggest a ranked list of rule modifications that an expert rule specifier can consider. We implemented our technique in the SystemT information extraction system developed at IBM Research -- Almaden and experimentally demonstrate its effectiveness.</description><identifier>ISSN: 2150-8097</identifier><identifier>EISSN: 2150-8097</identifier><identifier>DOI: 10.14778/1920841.1920916</identifier><language>eng</language><ispartof>Proceedings of the VLDB Endowment, 2010-09, Vol.3 (1-2), p.588-597</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c243t-629f9f519383424bdb177f5b18ec382553ac47cdf7bd5332433dc13083508c913</citedby><cites>FETCH-LOGICAL-c243t-629f9f519383424bdb177f5b18ec382553ac47cdf7bd5332433dc13083508c913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Liu, Bin</creatorcontrib><creatorcontrib>Chiticariu, Laura</creatorcontrib><creatorcontrib>Chu, Vivian</creatorcontrib><creatorcontrib>Jagadish, H. V.</creatorcontrib><creatorcontrib>Reiss, Frederick R.</creatorcontrib><title>Automatic rule refinement for information extraction</title><title>Proceedings of the VLDB Endowment</title><description>Rule-based information extraction from text is increasingly being used to populate databases and to support structured queries on unstructured text. Specification of suitable information extraction rules requires considerable skill and standard practice is to refine rules iteratively, with substantial effort. In this paper, we show that techniques developed in the context of data provenance, to determine the lineage of a tuple in a database, can be leveraged to assist in rule refinement. Specifically, given a set of extraction rules and correct and incorrect extracted data, we have developed a technique to suggest a ranked list of rule modifications that an expert rule specifier can consider. We implemented our technique in the SystemT information extraction system developed at IBM Research -- Almaden and experimentally demonstrate its effectiveness.</description><issn>2150-8097</issn><issn>2150-8097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpNj81qwzAQhEVpoGmae496AadarWRJxxD6Ewj00p6FLEvgEttFUqB9-9qtD73MDAy7zEfIPbAdCKX0AxjOtIDd7AbqK7LmIFmlmVHX__INuc35g7Fa16DXROwvZexd6TxNl3OgKcRuCH0YCo1jot0w6VyPAw1fJTk_xzuyiu6cw3bxDXl_enw7vFSn1-fjYX-qPBdYqpqbaKIEgxoFF03bgFJRNqCDR82lROeF8m1UTSsRpxtsPSDTKJn2BnBD2N9fn8acp2n2M3W9S98WmP2ltgu1XajxB7FOSU0</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Liu, Bin</creator><creator>Chiticariu, Laura</creator><creator>Chu, Vivian</creator><creator>Jagadish, H. V.</creator><creator>Reiss, Frederick R.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100901</creationdate><title>Automatic rule refinement for information extraction</title><author>Liu, Bin ; Chiticariu, Laura ; Chu, Vivian ; Jagadish, H. V. ; Reiss, Frederick R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-629f9f519383424bdb177f5b18ec382553ac47cdf7bd5332433dc13083508c913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Bin</creatorcontrib><creatorcontrib>Chiticariu, Laura</creatorcontrib><creatorcontrib>Chu, Vivian</creatorcontrib><creatorcontrib>Jagadish, H. V.</creatorcontrib><creatorcontrib>Reiss, Frederick R.</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the VLDB Endowment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Bin</au><au>Chiticariu, Laura</au><au>Chu, Vivian</au><au>Jagadish, H. V.</au><au>Reiss, Frederick R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic rule refinement for information extraction</atitle><jtitle>Proceedings of the VLDB Endowment</jtitle><date>2010-09-01</date><risdate>2010</risdate><volume>3</volume><issue>1-2</issue><spage>588</spage><epage>597</epage><pages>588-597</pages><issn>2150-8097</issn><eissn>2150-8097</eissn><abstract>Rule-based information extraction from text is increasingly being used to populate databases and to support structured queries on unstructured text. Specification of suitable information extraction rules requires considerable skill and standard practice is to refine rules iteratively, with substantial effort. In this paper, we show that techniques developed in the context of data provenance, to determine the lineage of a tuple in a database, can be leveraged to assist in rule refinement. Specifically, given a set of extraction rules and correct and incorrect extracted data, we have developed a technique to suggest a ranked list of rule modifications that an expert rule specifier can consider. We implemented our technique in the SystemT information extraction system developed at IBM Research -- Almaden and experimentally demonstrate its effectiveness.</abstract><doi>10.14778/1920841.1920916</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2150-8097
ispartof Proceedings of the VLDB Endowment, 2010-09, Vol.3 (1-2), p.588-597
issn 2150-8097
2150-8097
language eng
recordid cdi_crossref_primary_10_14778_1920841_1920916
source ACM Digital Library Complete
title Automatic rule refinement for information extraction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A47%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20rule%20refinement%20for%20information%20extraction&rft.jtitle=Proceedings%20of%20the%20VLDB%20Endowment&rft.au=Liu,%20Bin&rft.date=2010-09-01&rft.volume=3&rft.issue=1-2&rft.spage=588&rft.epage=597&rft.pages=588-597&rft.issn=2150-8097&rft.eissn=2150-8097&rft_id=info:doi/10.14778/1920841.1920916&rft_dat=%3Ccrossref%3E10_14778_1920841_1920916%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true