Impact of gut permeability on estimation of oral bioavailability for chemicals in commerce and the environment
Performance of pharmacokinetic models developed using in-vitro-to-in-vivo extrapolation (IVIVE) methods may be improved by refining assumptions regarding fraction absorbed (Fabs) through the intestine, a component of oral bioavailability (Fbio). Although in vivo measures of Fabs are often unavailabl...
Gespeichert in:
Veröffentlicht in: | ALTEX 2025, Vol.42 (1), p.56 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 56 |
container_title | ALTEX |
container_volume | 42 |
creator | Honda, Gregory S Kenyon, Elaina M Davidson-Fritz, Sarah Dinallo, Roger El Masri, Hisham Korol-Bexell, Evgenia Li, Li Angus, Derek Pearce, Robert G Sayre, Risa R Strock, Christopher Thomas, Russell S Wetmore, Barbara A Wambaugh, John F |
description | Performance of pharmacokinetic models developed using in-vitro-to-in-vivo extrapolation (IVIVE) methods may be improved by refining assumptions regarding fraction absorbed (Fabs) through the intestine, a component of oral bioavailability (Fbio). Although in vivo measures of Fabs are often unavailable for non-pharmaceuticals, in vitro measures of apparent permeability (Papp) using the Caco-2 cell line have been highly correlated with Fabs. We measured bidirectional Papp for over 400 non-pharmaceutical chemicals using the Caco-2 assay. A random forest quantitative structure-property relationship (QSPR) model was developed using these and peer-reviewed pharmaceutical data. Both Caco-2 data (R2 = 0.37) and the QSPR model (R2 = 0.29) were better at predicting human bioavailability compared to in vivo rat data (R2 = 0.23). After incorporation into a high-throughput toxicokinetics (HTTK) framework for IVIVE, the Caco-2 data were used to estimate in vivo administered equivalent dose (AED) for bioactivity assessed in vitro. The HTTK-predicted plasma steady state concentrations (Css) for IVIVE were revised, with modest changes predicted for poorly absorbed chemicals. Experimental data were evaluated for sources of measurement uncertainty, which were then accounted for using the Monte Carlo method. Revised AEDs were subsequently compared with exposure estimates to evaluate effects on bioactivity:exposure ratios, a surrogate for risk. Only minor changes in the margin between chemical exposure and predicted bioactive doses were observed due to the preponderance of highly absorbed chemicals. |
doi_str_mv | 10.14573/altex.2403271 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_14573_altex_2403271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>39434630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c950-26e36c0ef553dc9a0b8eb389db04ac9762aa16b41eda190ddb977dcdc9be91563</originalsourceid><addsrcrecordid>eNo9kMtqwzAQRUVpaUKabZdFP2BXsizZWpbQRyDQTRbdGT3GjYplGVkJzd_X5NHZzF2cOzAHoUdKclryij2rLsFvXpSEFRW9QXNaizqrOae3l8yl-Jqh5Tj-kGkEKWhV3KMZkyUrBSNz1K_9oEzCocXf-4QHiB6Udp1LRxx6DGNyXiU3xYkIUXVYu6AOynVXqg0Rmx14Z1Q3YtdjE7yHaACr3uK0Awz9wcXQe-jTA7prJwyWl71A27fX7eoj23y-r1cvm8xITrJCABOGQMs5s0YqomvQrJZWk1IZWYlCKSp0ScEqKom1WlaVNROqQVIu2ALl57MmhnGM0DZDnP6Ix4aS5qSuOalrLuqmwtO5MOy1B_uPX0WxPzA9bZk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Impact of gut permeability on estimation of oral bioavailability for chemicals in commerce and the environment</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Springer Nature OA Free Journals</source><creator>Honda, Gregory S ; Kenyon, Elaina M ; Davidson-Fritz, Sarah ; Dinallo, Roger ; El Masri, Hisham ; Korol-Bexell, Evgenia ; Li, Li ; Angus, Derek ; Pearce, Robert G ; Sayre, Risa R ; Strock, Christopher ; Thomas, Russell S ; Wetmore, Barbara A ; Wambaugh, John F</creator><creatorcontrib>Honda, Gregory S ; Kenyon, Elaina M ; Davidson-Fritz, Sarah ; Dinallo, Roger ; El Masri, Hisham ; Korol-Bexell, Evgenia ; Li, Li ; Angus, Derek ; Pearce, Robert G ; Sayre, Risa R ; Strock, Christopher ; Thomas, Russell S ; Wetmore, Barbara A ; Wambaugh, John F</creatorcontrib><description>Performance of pharmacokinetic models developed using in-vitro-to-in-vivo extrapolation (IVIVE) methods may be improved by refining assumptions regarding fraction absorbed (Fabs) through the intestine, a component of oral bioavailability (Fbio). Although in vivo measures of Fabs are often unavailable for non-pharmaceuticals, in vitro measures of apparent permeability (Papp) using the Caco-2 cell line have been highly correlated with Fabs. We measured bidirectional Papp for over 400 non-pharmaceutical chemicals using the Caco-2 assay. A random forest quantitative structure-property relationship (QSPR) model was developed using these and peer-reviewed pharmaceutical data. Both Caco-2 data (R2 = 0.37) and the QSPR model (R2 = 0.29) were better at predicting human bioavailability compared to in vivo rat data (R2 = 0.23). After incorporation into a high-throughput toxicokinetics (HTTK) framework for IVIVE, the Caco-2 data were used to estimate in vivo administered equivalent dose (AED) for bioactivity assessed in vitro. The HTTK-predicted plasma steady state concentrations (Css) for IVIVE were revised, with modest changes predicted for poorly absorbed chemicals. Experimental data were evaluated for sources of measurement uncertainty, which were then accounted for using the Monte Carlo method. Revised AEDs were subsequently compared with exposure estimates to evaluate effects on bioactivity:exposure ratios, a surrogate for risk. Only minor changes in the margin between chemical exposure and predicted bioactive doses were observed due to the preponderance of highly absorbed chemicals.</description><identifier>ISSN: 1868-596X</identifier><identifier>EISSN: 1868-8551</identifier><identifier>EISSN: 1868-596X</identifier><identifier>DOI: 10.14573/altex.2403271</identifier><identifier>PMID: 39434630</identifier><language>eng</language><publisher>Germany</publisher><subject>Administration, Oral ; Animal Testing Alternatives ; Animals ; Biological Availability ; Caco-2 Cells ; Humans ; Intestinal Absorption ; Models, Biological ; Monte Carlo Method ; Permeability ; Quantitative Structure-Activity Relationship ; Rats</subject><ispartof>ALTEX, 2025, Vol.42 (1), p.56</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39434630$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Honda, Gregory S</creatorcontrib><creatorcontrib>Kenyon, Elaina M</creatorcontrib><creatorcontrib>Davidson-Fritz, Sarah</creatorcontrib><creatorcontrib>Dinallo, Roger</creatorcontrib><creatorcontrib>El Masri, Hisham</creatorcontrib><creatorcontrib>Korol-Bexell, Evgenia</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Angus, Derek</creatorcontrib><creatorcontrib>Pearce, Robert G</creatorcontrib><creatorcontrib>Sayre, Risa R</creatorcontrib><creatorcontrib>Strock, Christopher</creatorcontrib><creatorcontrib>Thomas, Russell S</creatorcontrib><creatorcontrib>Wetmore, Barbara A</creatorcontrib><creatorcontrib>Wambaugh, John F</creatorcontrib><title>Impact of gut permeability on estimation of oral bioavailability for chemicals in commerce and the environment</title><title>ALTEX</title><addtitle>ALTEX</addtitle><description>Performance of pharmacokinetic models developed using in-vitro-to-in-vivo extrapolation (IVIVE) methods may be improved by refining assumptions regarding fraction absorbed (Fabs) through the intestine, a component of oral bioavailability (Fbio). Although in vivo measures of Fabs are often unavailable for non-pharmaceuticals, in vitro measures of apparent permeability (Papp) using the Caco-2 cell line have been highly correlated with Fabs. We measured bidirectional Papp for over 400 non-pharmaceutical chemicals using the Caco-2 assay. A random forest quantitative structure-property relationship (QSPR) model was developed using these and peer-reviewed pharmaceutical data. Both Caco-2 data (R2 = 0.37) and the QSPR model (R2 = 0.29) were better at predicting human bioavailability compared to in vivo rat data (R2 = 0.23). After incorporation into a high-throughput toxicokinetics (HTTK) framework for IVIVE, the Caco-2 data were used to estimate in vivo administered equivalent dose (AED) for bioactivity assessed in vitro. The HTTK-predicted plasma steady state concentrations (Css) for IVIVE were revised, with modest changes predicted for poorly absorbed chemicals. Experimental data were evaluated for sources of measurement uncertainty, which were then accounted for using the Monte Carlo method. Revised AEDs were subsequently compared with exposure estimates to evaluate effects on bioactivity:exposure ratios, a surrogate for risk. Only minor changes in the margin between chemical exposure and predicted bioactive doses were observed due to the preponderance of highly absorbed chemicals.</description><subject>Administration, Oral</subject><subject>Animal Testing Alternatives</subject><subject>Animals</subject><subject>Biological Availability</subject><subject>Caco-2 Cells</subject><subject>Humans</subject><subject>Intestinal Absorption</subject><subject>Models, Biological</subject><subject>Monte Carlo Method</subject><subject>Permeability</subject><subject>Quantitative Structure-Activity Relationship</subject><subject>Rats</subject><issn>1868-596X</issn><issn>1868-8551</issn><issn>1868-596X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kMtqwzAQRUVpaUKabZdFP2BXsizZWpbQRyDQTRbdGT3GjYplGVkJzd_X5NHZzF2cOzAHoUdKclryij2rLsFvXpSEFRW9QXNaizqrOae3l8yl-Jqh5Tj-kGkEKWhV3KMZkyUrBSNz1K_9oEzCocXf-4QHiB6Udp1LRxx6DGNyXiU3xYkIUXVYu6AOynVXqg0Rmx14Z1Q3YtdjE7yHaACr3uK0Awz9wcXQe-jTA7prJwyWl71A27fX7eoj23y-r1cvm8xITrJCABOGQMs5s0YqomvQrJZWk1IZWYlCKSp0ScEqKom1WlaVNROqQVIu2ALl57MmhnGM0DZDnP6Ix4aS5qSuOalrLuqmwtO5MOy1B_uPX0WxPzA9bZk</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Honda, Gregory S</creator><creator>Kenyon, Elaina M</creator><creator>Davidson-Fritz, Sarah</creator><creator>Dinallo, Roger</creator><creator>El Masri, Hisham</creator><creator>Korol-Bexell, Evgenia</creator><creator>Li, Li</creator><creator>Angus, Derek</creator><creator>Pearce, Robert G</creator><creator>Sayre, Risa R</creator><creator>Strock, Christopher</creator><creator>Thomas, Russell S</creator><creator>Wetmore, Barbara A</creator><creator>Wambaugh, John F</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2025</creationdate><title>Impact of gut permeability on estimation of oral bioavailability for chemicals in commerce and the environment</title><author>Honda, Gregory S ; Kenyon, Elaina M ; Davidson-Fritz, Sarah ; Dinallo, Roger ; El Masri, Hisham ; Korol-Bexell, Evgenia ; Li, Li ; Angus, Derek ; Pearce, Robert G ; Sayre, Risa R ; Strock, Christopher ; Thomas, Russell S ; Wetmore, Barbara A ; Wambaugh, John F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c950-26e36c0ef553dc9a0b8eb389db04ac9762aa16b41eda190ddb977dcdc9be91563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Administration, Oral</topic><topic>Animal Testing Alternatives</topic><topic>Animals</topic><topic>Biological Availability</topic><topic>Caco-2 Cells</topic><topic>Humans</topic><topic>Intestinal Absorption</topic><topic>Models, Biological</topic><topic>Monte Carlo Method</topic><topic>Permeability</topic><topic>Quantitative Structure-Activity Relationship</topic><topic>Rats</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Honda, Gregory S</creatorcontrib><creatorcontrib>Kenyon, Elaina M</creatorcontrib><creatorcontrib>Davidson-Fritz, Sarah</creatorcontrib><creatorcontrib>Dinallo, Roger</creatorcontrib><creatorcontrib>El Masri, Hisham</creatorcontrib><creatorcontrib>Korol-Bexell, Evgenia</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Angus, Derek</creatorcontrib><creatorcontrib>Pearce, Robert G</creatorcontrib><creatorcontrib>Sayre, Risa R</creatorcontrib><creatorcontrib>Strock, Christopher</creatorcontrib><creatorcontrib>Thomas, Russell S</creatorcontrib><creatorcontrib>Wetmore, Barbara A</creatorcontrib><creatorcontrib>Wambaugh, John F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ALTEX</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Honda, Gregory S</au><au>Kenyon, Elaina M</au><au>Davidson-Fritz, Sarah</au><au>Dinallo, Roger</au><au>El Masri, Hisham</au><au>Korol-Bexell, Evgenia</au><au>Li, Li</au><au>Angus, Derek</au><au>Pearce, Robert G</au><au>Sayre, Risa R</au><au>Strock, Christopher</au><au>Thomas, Russell S</au><au>Wetmore, Barbara A</au><au>Wambaugh, John F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of gut permeability on estimation of oral bioavailability for chemicals in commerce and the environment</atitle><jtitle>ALTEX</jtitle><addtitle>ALTEX</addtitle><date>2025</date><risdate>2025</risdate><volume>42</volume><issue>1</issue><spage>56</spage><pages>56-</pages><issn>1868-596X</issn><eissn>1868-8551</eissn><eissn>1868-596X</eissn><abstract>Performance of pharmacokinetic models developed using in-vitro-to-in-vivo extrapolation (IVIVE) methods may be improved by refining assumptions regarding fraction absorbed (Fabs) through the intestine, a component of oral bioavailability (Fbio). Although in vivo measures of Fabs are often unavailable for non-pharmaceuticals, in vitro measures of apparent permeability (Papp) using the Caco-2 cell line have been highly correlated with Fabs. We measured bidirectional Papp for over 400 non-pharmaceutical chemicals using the Caco-2 assay. A random forest quantitative structure-property relationship (QSPR) model was developed using these and peer-reviewed pharmaceutical data. Both Caco-2 data (R2 = 0.37) and the QSPR model (R2 = 0.29) were better at predicting human bioavailability compared to in vivo rat data (R2 = 0.23). After incorporation into a high-throughput toxicokinetics (HTTK) framework for IVIVE, the Caco-2 data were used to estimate in vivo administered equivalent dose (AED) for bioactivity assessed in vitro. The HTTK-predicted plasma steady state concentrations (Css) for IVIVE were revised, with modest changes predicted for poorly absorbed chemicals. Experimental data were evaluated for sources of measurement uncertainty, which were then accounted for using the Monte Carlo method. Revised AEDs were subsequently compared with exposure estimates to evaluate effects on bioactivity:exposure ratios, a surrogate for risk. Only minor changes in the margin between chemical exposure and predicted bioactive doses were observed due to the preponderance of highly absorbed chemicals.</abstract><cop>Germany</cop><pmid>39434630</pmid><doi>10.14573/altex.2403271</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1868-596X |
ispartof | ALTEX, 2025, Vol.42 (1), p.56 |
issn | 1868-596X 1868-8551 1868-596X |
language | eng |
recordid | cdi_crossref_primary_10_14573_altex_2403271 |
source | MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Springer Nature OA Free Journals |
subjects | Administration, Oral Animal Testing Alternatives Animals Biological Availability Caco-2 Cells Humans Intestinal Absorption Models, Biological Monte Carlo Method Permeability Quantitative Structure-Activity Relationship Rats |
title | Impact of gut permeability on estimation of oral bioavailability for chemicals in commerce and the environment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T18%3A42%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20gut%20permeability%20on%20estimation%20of%20oral%20bioavailability%20for%20chemicals%20in%20commerce%20and%20the%20environment&rft.jtitle=ALTEX&rft.au=Honda,%20Gregory%20S&rft.date=2025&rft.volume=42&rft.issue=1&rft.spage=56&rft.pages=56-&rft.issn=1868-596X&rft.eissn=1868-8551&rft_id=info:doi/10.14573/altex.2403271&rft_dat=%3Cpubmed_cross%3E39434630%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/39434630&rfr_iscdi=true |