Потенциалы для трехмерного эллиптического уравнения с одним сингулярным коэффициентом и их применение
Рассматривается теория потенциала для трехмерного эллиптического уравнения с одним сингулярным коэффициентом. В рассмотрение вводятся потенциалы двойного и простого слоев с неизвестной плотностью, которые выражаются через фундаментальное решение названного эллиптического уравнения. При исследовании...
Gespeichert in:
Veröffentlicht in: | Vestnik Samarskogo gosudarstvennogo tehničeskogo universiteta. Seriâ Fiziko-matematičeskie nauki 2021, Vol.25 (2), p.257-285 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | rus |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Рассматривается теория потенциала для трехмерного эллиптического уравнения с одним
сингулярным коэффициентом.
В рассмотрение вводятся потенциалы двойного и простого слоев с неизвестной плотностью, которые выражаются через фундаментальное решение названного эллиптического уравнения.
При исследовании этих потенциалов используются свойства гипергеометрической функции Гаусса.
Доказаны теоремы о предельных значениях введенных потенциалов и их конормальных производных, которые позволяют эквивалентным образом свести краевые задачи для сингулярных эллиптических уравнений к интегральному уравнению второго рода, к которому применима теория Фредгольма.
В качестве приложения изложенной теории в области, ограниченной координатной плоскостью $x=0$ и поверхностью Ляпунова при $x>0$, для трехмерного эллиптического уравнения с одним сингулярным коэффициентом решается задача Хольмгрена.
Единственность решения поставленной задачи доказывается известным методом $abc$, а существование - методом функции Грина, регулярная часть которой ищется в виде потенциала двойного слоя с временно неизвестной плотностью.
Решение задачи Хольмгрена находится в виде, удобном для дальнейших исследований.
A potential theory for a three-dimensional elliptic equation with one singular coefficient is considered. Double- and simple-layer potentials with unknown density are introduced, which are expressed in terms of the fundamental solution of the mentioned elliptic equation. When studying these potentials, the properties of the Gaussian hypergeometric function are used.
Theorems are proved on the limiting values of the introduced potentials and their conormal derivatives, which make it possible to equivalently reduce boundary value problems for singular elliptic equations to an integral equation of the second kind, to which the Fredholm theory is applicable.
The Holmgren problem is solved for a three-dimensional elliptic equation with one singular coefficient in the domain bounded $x=0$ by the coordinate plane and the Lyapunov surface for $x>0$ as an application of the stated theory. The uniqueness of the solution to the stated problem is proved by the well-known abc method, and existence is proved by the method of the Green's function, the regular part of which is sought in the form of the double-layer potential with an unknown density. The solution to the Holmgren problem is found in a form convenient for further research. |
---|---|
ISSN: | 1991-8615 2310-7081 |
DOI: | 10.14498/vsgtu1810 |