Stabilized approximate inverse preconditioning based on A-orthogonalization process for parallel finite element analysis
Improved Stabilized Approximate Inverse (ISAINV) based on A-orthogonalization process is known as an effective preconditioning technique for the conjugate gradient (CG) method to solve highly ill-conditioned linear systems. This research aims to accelerate the convergence of the finite element analy...
Gespeichert in:
Veröffentlicht in: | JSIAM Letters 2016, Vol.8, pp.25-28 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 28 |
---|---|
container_issue | |
container_start_page | 25 |
container_title | JSIAM Letters |
container_volume | 8 |
creator | Morita, Naoki Hashimoto, Gaku Okuda, Hiroshi |
description | Improved Stabilized Approximate Inverse (ISAINV) based on A-orthogonalization process is known as an effective preconditioning technique for the conjugate gradient (CG) method to solve highly ill-conditioned linear systems. This research aims to accelerate the convergence of the finite element analysis of shell structures by preserving the sparsity in the preconditioning matrix and by parallelizing the localized process of ISAINV preconditioning. In the numerical results, the proposed ISAINV preconditioner shows better convergence and faster computational time than the conventional preconditioning. |
doi_str_mv | 10.14495/jsiaml.8.25 |
format | Article |
fullrecord | <record><control><sourceid>jstage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_14495_jsiaml_8_25</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>article_jsiaml_8_0_8_25_article_char_en</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2965-ea6305173c30e30dab2543625dd6172b59521534a911c1745b99766301418bfc3</originalsourceid><addsrcrecordid>eNpFkFtLAzEQhYMoWGrf_AH5AW7NZbOXBx9K8QYFH9TnZTY726akyZIs0vrrja3UpxlmvnPgHEJuOZvzPK_V_TYa2Nl5NRfqgkx4VcmMFby8PO-sviazGE3LOBOK1UJOyP59hNZY840dhWEIfm92MCI17gtDRDoE1N51ZjTeGbemLcREekcXmQ_jxq-9g6SG33-CvcYYae8DHSCAtWhpb5xJhmhxh26kkPhDNPGGXPVgI87-5pR8Pj1-LF-y1dvz63KxyrSoC5UhFJIpXkotGUrWQStULguhui5lE62qleBK5lBzrnmZq7auyyJpeM6rttdySu5Ovjr4GAP2zRBSxHBoOGuOxTWn4pqqESrhDyd8G0dY4xmGMBpt8Z9lR_581xsIDTr5A1yTe5E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stabilized approximate inverse preconditioning based on A-orthogonalization process for parallel finite element analysis</title><source>J-STAGE Free</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Morita, Naoki ; Hashimoto, Gaku ; Okuda, Hiroshi</creator><creatorcontrib>Morita, Naoki ; Hashimoto, Gaku ; Okuda, Hiroshi</creatorcontrib><description>Improved Stabilized Approximate Inverse (ISAINV) based on A-orthogonalization process is known as an effective preconditioning technique for the conjugate gradient (CG) method to solve highly ill-conditioned linear systems. This research aims to accelerate the convergence of the finite element analysis of shell structures by preserving the sparsity in the preconditioning matrix and by parallelizing the localized process of ISAINV preconditioning. In the numerical results, the proposed ISAINV preconditioner shows better convergence and faster computational time than the conventional preconditioning.</description><identifier>ISSN: 1883-0609</identifier><identifier>EISSN: 1883-0617</identifier><identifier>DOI: 10.14495/jsiaml.8.25</identifier><language>eng</language><publisher>The Japan Society for Industrial and Applied Mathematics</publisher><subject>incomplete factorization ; parallel finite element method ; preconditioned conjugate gradient method ; sparse approximate inverse</subject><ispartof>JSIAM Letters, 2016, Vol.8, pp.25-28</ispartof><rights>2016, The Japan Society for Industrial and Applied Mathematics</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2965-ea6305173c30e30dab2543625dd6172b59521534a911c1745b99766301418bfc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1876,4009,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Morita, Naoki</creatorcontrib><creatorcontrib>Hashimoto, Gaku</creatorcontrib><creatorcontrib>Okuda, Hiroshi</creatorcontrib><title>Stabilized approximate inverse preconditioning based on A-orthogonalization process for parallel finite element analysis</title><title>JSIAM Letters</title><addtitle>JSIAM Letters</addtitle><description>Improved Stabilized Approximate Inverse (ISAINV) based on A-orthogonalization process is known as an effective preconditioning technique for the conjugate gradient (CG) method to solve highly ill-conditioned linear systems. This research aims to accelerate the convergence of the finite element analysis of shell structures by preserving the sparsity in the preconditioning matrix and by parallelizing the localized process of ISAINV preconditioning. In the numerical results, the proposed ISAINV preconditioner shows better convergence and faster computational time than the conventional preconditioning.</description><subject>incomplete factorization</subject><subject>parallel finite element method</subject><subject>preconditioned conjugate gradient method</subject><subject>sparse approximate inverse</subject><issn>1883-0609</issn><issn>1883-0617</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpFkFtLAzEQhYMoWGrf_AH5AW7NZbOXBx9K8QYFH9TnZTY726akyZIs0vrrja3UpxlmvnPgHEJuOZvzPK_V_TYa2Nl5NRfqgkx4VcmMFby8PO-sviazGE3LOBOK1UJOyP59hNZY840dhWEIfm92MCI17gtDRDoE1N51ZjTeGbemLcREekcXmQ_jxq-9g6SG33-CvcYYae8DHSCAtWhpb5xJhmhxh26kkPhDNPGGXPVgI87-5pR8Pj1-LF-y1dvz63KxyrSoC5UhFJIpXkotGUrWQStULguhui5lE62qleBK5lBzrnmZq7auyyJpeM6rttdySu5Ovjr4GAP2zRBSxHBoOGuOxTWn4pqqESrhDyd8G0dY4xmGMBpt8Z9lR_581xsIDTr5A1yTe5E</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Morita, Naoki</creator><creator>Hashimoto, Gaku</creator><creator>Okuda, Hiroshi</creator><general>The Japan Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2016</creationdate><title>Stabilized approximate inverse preconditioning based on A-orthogonalization process for parallel finite element analysis</title><author>Morita, Naoki ; Hashimoto, Gaku ; Okuda, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2965-ea6305173c30e30dab2543625dd6172b59521534a911c1745b99766301418bfc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>incomplete factorization</topic><topic>parallel finite element method</topic><topic>preconditioned conjugate gradient method</topic><topic>sparse approximate inverse</topic><toplevel>online_resources</toplevel><creatorcontrib>Morita, Naoki</creatorcontrib><creatorcontrib>Hashimoto, Gaku</creatorcontrib><creatorcontrib>Okuda, Hiroshi</creatorcontrib><collection>CrossRef</collection><jtitle>JSIAM Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morita, Naoki</au><au>Hashimoto, Gaku</au><au>Okuda, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilized approximate inverse preconditioning based on A-orthogonalization process for parallel finite element analysis</atitle><jtitle>JSIAM Letters</jtitle><addtitle>JSIAM Letters</addtitle><date>2016</date><risdate>2016</risdate><volume>8</volume><spage>25</spage><epage>28</epage><pages>25-28</pages><issn>1883-0609</issn><eissn>1883-0617</eissn><abstract>Improved Stabilized Approximate Inverse (ISAINV) based on A-orthogonalization process is known as an effective preconditioning technique for the conjugate gradient (CG) method to solve highly ill-conditioned linear systems. This research aims to accelerate the convergence of the finite element analysis of shell structures by preserving the sparsity in the preconditioning matrix and by parallelizing the localized process of ISAINV preconditioning. In the numerical results, the proposed ISAINV preconditioner shows better convergence and faster computational time than the conventional preconditioning.</abstract><pub>The Japan Society for Industrial and Applied Mathematics</pub><doi>10.14495/jsiaml.8.25</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1883-0609 |
ispartof | JSIAM Letters, 2016, Vol.8, pp.25-28 |
issn | 1883-0609 1883-0617 |
language | eng |
recordid | cdi_crossref_primary_10_14495_jsiaml_8_25 |
source | J-STAGE Free; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | incomplete factorization parallel finite element method preconditioned conjugate gradient method sparse approximate inverse |
title | Stabilized approximate inverse preconditioning based on A-orthogonalization process for parallel finite element analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T03%3A36%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilized%20approximate%20inverse%20preconditioning%20based%20on%20A-orthogonalization%20process%20for%20parallel%20finite%20element%20analysis&rft.jtitle=JSIAM%20Letters&rft.au=Morita,%20Naoki&rft.date=2016&rft.volume=8&rft.spage=25&rft.epage=28&rft.pages=25-28&rft.issn=1883-0609&rft.eissn=1883-0617&rft_id=info:doi/10.14495/jsiaml.8.25&rft_dat=%3Cjstage_cross%3Earticle_jsiaml_8_0_8_25_article_char_en%3C/jstage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |