Approximated logarithmic maps on Riemannian manifolds and their applications

Recently, optimization problems on Riemannian manifolds involving geodesic distances have been attracting considerable research interest. To compute geodesic distances and their Riemannian gradients, we can use logarithmic maps. However, the computational cost of logarithmic maps on Riemannian manif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JSIAM Letters 2021, Vol.13, pp.17-20
Hauptverfasser: Goto, Jumpei, Sato, Hiroyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20
container_issue
container_start_page 17
container_title JSIAM Letters
container_volume 13
creator Goto, Jumpei
Sato, Hiroyuki
description Recently, optimization problems on Riemannian manifolds involving geodesic distances have been attracting considerable research interest. To compute geodesic distances and their Riemannian gradients, we can use logarithmic maps. However, the computational cost of logarithmic maps on Riemannian manifolds is generally higher than that on the Euclidean space. To overcome this computational issue, we propose approximated logarithmic maps. We prove that the definition is closely related to the inverse retractions. Numerical experiments for computing the Riemannian center of mass show that the proposed approximation significantly reduces the computational time while maintaining appropriate precision if the data diameter is sufficiently small.
doi_str_mv 10.14495/jsiaml.13.17
format Article
fullrecord <record><control><sourceid>jstage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_14495_jsiaml_13_17</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>article_jsiaml_13_0_13_17_article_char_en</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-556f68d9caf80209ce37c86f872750e48a1ac62f06e56652c4b043ab07d95b33</originalsourceid><addsrcrecordid>eNpNkM1LAzEQxYMoWKtH7_kHtk42m489SRG_oCBI72GaTdqU3eyS5KD_vcWV4mmGeb958B4h9wxWrGla8XDMAYd-xfiKqQuyYFrzCiRTl-cd2mtyk_MRQLaM1QuyWU9TGr_CgMV1tB_3mEI5DMHSAadMx0g_gxswxoDxdIrBj32XKcaOloMLieI09cFiCWPMt-TKY5_d3d9cku3L8_bprdp8vL4_rTeV5bUulRDSS921Fr2GGlrruLJaeq1qJcA1GhlaWXuQTkgpatvsoOG4A9W1Ysf5klSzrU1jzsl5M6VTgPRtGJjfJszchGHcMHXiH2f-mAvu3ZnGVILt3T8Y5o-zYg-YjIv8B5yTazA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Approximated logarithmic maps on Riemannian manifolds and their applications</title><source>J-STAGE Free</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Goto, Jumpei ; Sato, Hiroyuki</creator><creatorcontrib>Goto, Jumpei ; Sato, Hiroyuki</creatorcontrib><description>Recently, optimization problems on Riemannian manifolds involving geodesic distances have been attracting considerable research interest. To compute geodesic distances and their Riemannian gradients, we can use logarithmic maps. However, the computational cost of logarithmic maps on Riemannian manifolds is generally higher than that on the Euclidean space. To overcome this computational issue, we propose approximated logarithmic maps. We prove that the definition is closely related to the inverse retractions. Numerical experiments for computing the Riemannian center of mass show that the proposed approximation significantly reduces the computational time while maintaining appropriate precision if the data diameter is sufficiently small.</description><identifier>ISSN: 1883-0609</identifier><identifier>EISSN: 1883-0617</identifier><identifier>DOI: 10.14495/jsiaml.13.17</identifier><language>eng</language><publisher>The Japan Society for Industrial and Applied Mathematics</publisher><subject>logarithmic map ; retraction ; Riemannian manifold ; Riemannian optimization</subject><ispartof>JSIAM Letters, 2021, Vol.13, pp.17-20</ispartof><rights>2021, The Japan Society for Industrial and Applied Mathematics</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-556f68d9caf80209ce37c86f872750e48a1ac62f06e56652c4b043ab07d95b33</citedby><cites>FETCH-LOGICAL-c328t-556f68d9caf80209ce37c86f872750e48a1ac62f06e56652c4b043ab07d95b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,1879,4012,27906,27907,27908</link.rule.ids></links><search><creatorcontrib>Goto, Jumpei</creatorcontrib><creatorcontrib>Sato, Hiroyuki</creatorcontrib><title>Approximated logarithmic maps on Riemannian manifolds and their applications</title><title>JSIAM Letters</title><addtitle>JSIAM Letters</addtitle><description>Recently, optimization problems on Riemannian manifolds involving geodesic distances have been attracting considerable research interest. To compute geodesic distances and their Riemannian gradients, we can use logarithmic maps. However, the computational cost of logarithmic maps on Riemannian manifolds is generally higher than that on the Euclidean space. To overcome this computational issue, we propose approximated logarithmic maps. We prove that the definition is closely related to the inverse retractions. Numerical experiments for computing the Riemannian center of mass show that the proposed approximation significantly reduces the computational time while maintaining appropriate precision if the data diameter is sufficiently small.</description><subject>logarithmic map</subject><subject>retraction</subject><subject>Riemannian manifold</subject><subject>Riemannian optimization</subject><issn>1883-0609</issn><issn>1883-0617</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkM1LAzEQxYMoWKtH7_kHtk42m489SRG_oCBI72GaTdqU3eyS5KD_vcWV4mmGeb958B4h9wxWrGla8XDMAYd-xfiKqQuyYFrzCiRTl-cd2mtyk_MRQLaM1QuyWU9TGr_CgMV1tB_3mEI5DMHSAadMx0g_gxswxoDxdIrBj32XKcaOloMLieI09cFiCWPMt-TKY5_d3d9cku3L8_bprdp8vL4_rTeV5bUulRDSS921Fr2GGlrruLJaeq1qJcA1GhlaWXuQTkgpatvsoOG4A9W1Ysf5klSzrU1jzsl5M6VTgPRtGJjfJszchGHcMHXiH2f-mAvu3ZnGVILt3T8Y5o-zYg-YjIv8B5yTazA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Goto, Jumpei</creator><creator>Sato, Hiroyuki</creator><general>The Japan Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2021</creationdate><title>Approximated logarithmic maps on Riemannian manifolds and their applications</title><author>Goto, Jumpei ; Sato, Hiroyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-556f68d9caf80209ce37c86f872750e48a1ac62f06e56652c4b043ab07d95b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>logarithmic map</topic><topic>retraction</topic><topic>Riemannian manifold</topic><topic>Riemannian optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Goto, Jumpei</creatorcontrib><creatorcontrib>Sato, Hiroyuki</creatorcontrib><collection>CrossRef</collection><jtitle>JSIAM Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goto, Jumpei</au><au>Sato, Hiroyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximated logarithmic maps on Riemannian manifolds and their applications</atitle><jtitle>JSIAM Letters</jtitle><addtitle>JSIAM Letters</addtitle><date>2021</date><risdate>2021</risdate><volume>13</volume><spage>17</spage><epage>20</epage><pages>17-20</pages><issn>1883-0609</issn><eissn>1883-0617</eissn><abstract>Recently, optimization problems on Riemannian manifolds involving geodesic distances have been attracting considerable research interest. To compute geodesic distances and their Riemannian gradients, we can use logarithmic maps. However, the computational cost of logarithmic maps on Riemannian manifolds is generally higher than that on the Euclidean space. To overcome this computational issue, we propose approximated logarithmic maps. We prove that the definition is closely related to the inverse retractions. Numerical experiments for computing the Riemannian center of mass show that the proposed approximation significantly reduces the computational time while maintaining appropriate precision if the data diameter is sufficiently small.</abstract><pub>The Japan Society for Industrial and Applied Mathematics</pub><doi>10.14495/jsiaml.13.17</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1883-0609
ispartof JSIAM Letters, 2021, Vol.13, pp.17-20
issn 1883-0609
1883-0617
language eng
recordid cdi_crossref_primary_10_14495_jsiaml_13_17
source J-STAGE Free; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects logarithmic map
retraction
Riemannian manifold
Riemannian optimization
title Approximated logarithmic maps on Riemannian manifolds and their applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T08%3A08%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximated%20logarithmic%20maps%20on%20Riemannian%20manifolds%20and%20their%20applications&rft.jtitle=JSIAM%20Letters&rft.au=Goto,%20Jumpei&rft.date=2021&rft.volume=13&rft.spage=17&rft.epage=20&rft.pages=17-20&rft.issn=1883-0609&rft.eissn=1883-0617&rft_id=info:doi/10.14495/jsiaml.13.17&rft_dat=%3Cjstage_cross%3Earticle_jsiaml_13_0_13_17_article_char_en%3C/jstage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true