Approximated logarithmic maps on Riemannian manifolds and their applications
Recently, optimization problems on Riemannian manifolds involving geodesic distances have been attracting considerable research interest. To compute geodesic distances and their Riemannian gradients, we can use logarithmic maps. However, the computational cost of logarithmic maps on Riemannian manif...
Gespeichert in:
Veröffentlicht in: | JSIAM Letters 2021, Vol.13, pp.17-20 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20 |
---|---|
container_issue | |
container_start_page | 17 |
container_title | JSIAM Letters |
container_volume | 13 |
creator | Goto, Jumpei Sato, Hiroyuki |
description | Recently, optimization problems on Riemannian manifolds involving geodesic distances have been attracting considerable research interest. To compute geodesic distances and their Riemannian gradients, we can use logarithmic maps. However, the computational cost of logarithmic maps on Riemannian manifolds is generally higher than that on the Euclidean space. To overcome this computational issue, we propose approximated logarithmic maps. We prove that the definition is closely related to the inverse retractions. Numerical experiments for computing the Riemannian center of mass show that the proposed approximation significantly reduces the computational time while maintaining appropriate precision if the data diameter is sufficiently small. |
doi_str_mv | 10.14495/jsiaml.13.17 |
format | Article |
fullrecord | <record><control><sourceid>jstage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_14495_jsiaml_13_17</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>article_jsiaml_13_0_13_17_article_char_en</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-556f68d9caf80209ce37c86f872750e48a1ac62f06e56652c4b043ab07d95b33</originalsourceid><addsrcrecordid>eNpNkM1LAzEQxYMoWKtH7_kHtk42m489SRG_oCBI72GaTdqU3eyS5KD_vcWV4mmGeb958B4h9wxWrGla8XDMAYd-xfiKqQuyYFrzCiRTl-cd2mtyk_MRQLaM1QuyWU9TGr_CgMV1tB_3mEI5DMHSAadMx0g_gxswxoDxdIrBj32XKcaOloMLieI09cFiCWPMt-TKY5_d3d9cku3L8_bprdp8vL4_rTeV5bUulRDSS921Fr2GGlrruLJaeq1qJcA1GhlaWXuQTkgpatvsoOG4A9W1Ysf5klSzrU1jzsl5M6VTgPRtGJjfJszchGHcMHXiH2f-mAvu3ZnGVILt3T8Y5o-zYg-YjIv8B5yTazA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Approximated logarithmic maps on Riemannian manifolds and their applications</title><source>J-STAGE Free</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Goto, Jumpei ; Sato, Hiroyuki</creator><creatorcontrib>Goto, Jumpei ; Sato, Hiroyuki</creatorcontrib><description>Recently, optimization problems on Riemannian manifolds involving geodesic distances have been attracting considerable research interest. To compute geodesic distances and their Riemannian gradients, we can use logarithmic maps. However, the computational cost of logarithmic maps on Riemannian manifolds is generally higher than that on the Euclidean space. To overcome this computational issue, we propose approximated logarithmic maps. We prove that the definition is closely related to the inverse retractions. Numerical experiments for computing the Riemannian center of mass show that the proposed approximation significantly reduces the computational time while maintaining appropriate precision if the data diameter is sufficiently small.</description><identifier>ISSN: 1883-0609</identifier><identifier>EISSN: 1883-0617</identifier><identifier>DOI: 10.14495/jsiaml.13.17</identifier><language>eng</language><publisher>The Japan Society for Industrial and Applied Mathematics</publisher><subject>logarithmic map ; retraction ; Riemannian manifold ; Riemannian optimization</subject><ispartof>JSIAM Letters, 2021, Vol.13, pp.17-20</ispartof><rights>2021, The Japan Society for Industrial and Applied Mathematics</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-556f68d9caf80209ce37c86f872750e48a1ac62f06e56652c4b043ab07d95b33</citedby><cites>FETCH-LOGICAL-c328t-556f68d9caf80209ce37c86f872750e48a1ac62f06e56652c4b043ab07d95b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,1879,4012,27906,27907,27908</link.rule.ids></links><search><creatorcontrib>Goto, Jumpei</creatorcontrib><creatorcontrib>Sato, Hiroyuki</creatorcontrib><title>Approximated logarithmic maps on Riemannian manifolds and their applications</title><title>JSIAM Letters</title><addtitle>JSIAM Letters</addtitle><description>Recently, optimization problems on Riemannian manifolds involving geodesic distances have been attracting considerable research interest. To compute geodesic distances and their Riemannian gradients, we can use logarithmic maps. However, the computational cost of logarithmic maps on Riemannian manifolds is generally higher than that on the Euclidean space. To overcome this computational issue, we propose approximated logarithmic maps. We prove that the definition is closely related to the inverse retractions. Numerical experiments for computing the Riemannian center of mass show that the proposed approximation significantly reduces the computational time while maintaining appropriate precision if the data diameter is sufficiently small.</description><subject>logarithmic map</subject><subject>retraction</subject><subject>Riemannian manifold</subject><subject>Riemannian optimization</subject><issn>1883-0609</issn><issn>1883-0617</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkM1LAzEQxYMoWKtH7_kHtk42m489SRG_oCBI72GaTdqU3eyS5KD_vcWV4mmGeb958B4h9wxWrGla8XDMAYd-xfiKqQuyYFrzCiRTl-cd2mtyk_MRQLaM1QuyWU9TGr_CgMV1tB_3mEI5DMHSAadMx0g_gxswxoDxdIrBj32XKcaOloMLieI09cFiCWPMt-TKY5_d3d9cku3L8_bprdp8vL4_rTeV5bUulRDSS921Fr2GGlrruLJaeq1qJcA1GhlaWXuQTkgpatvsoOG4A9W1Ysf5klSzrU1jzsl5M6VTgPRtGJjfJszchGHcMHXiH2f-mAvu3ZnGVILt3T8Y5o-zYg-YjIv8B5yTazA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Goto, Jumpei</creator><creator>Sato, Hiroyuki</creator><general>The Japan Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2021</creationdate><title>Approximated logarithmic maps on Riemannian manifolds and their applications</title><author>Goto, Jumpei ; Sato, Hiroyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-556f68d9caf80209ce37c86f872750e48a1ac62f06e56652c4b043ab07d95b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>logarithmic map</topic><topic>retraction</topic><topic>Riemannian manifold</topic><topic>Riemannian optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Goto, Jumpei</creatorcontrib><creatorcontrib>Sato, Hiroyuki</creatorcontrib><collection>CrossRef</collection><jtitle>JSIAM Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goto, Jumpei</au><au>Sato, Hiroyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximated logarithmic maps on Riemannian manifolds and their applications</atitle><jtitle>JSIAM Letters</jtitle><addtitle>JSIAM Letters</addtitle><date>2021</date><risdate>2021</risdate><volume>13</volume><spage>17</spage><epage>20</epage><pages>17-20</pages><issn>1883-0609</issn><eissn>1883-0617</eissn><abstract>Recently, optimization problems on Riemannian manifolds involving geodesic distances have been attracting considerable research interest. To compute geodesic distances and their Riemannian gradients, we can use logarithmic maps. However, the computational cost of logarithmic maps on Riemannian manifolds is generally higher than that on the Euclidean space. To overcome this computational issue, we propose approximated logarithmic maps. We prove that the definition is closely related to the inverse retractions. Numerical experiments for computing the Riemannian center of mass show that the proposed approximation significantly reduces the computational time while maintaining appropriate precision if the data diameter is sufficiently small.</abstract><pub>The Japan Society for Industrial and Applied Mathematics</pub><doi>10.14495/jsiaml.13.17</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1883-0609 |
ispartof | JSIAM Letters, 2021, Vol.13, pp.17-20 |
issn | 1883-0609 1883-0617 |
language | eng |
recordid | cdi_crossref_primary_10_14495_jsiaml_13_17 |
source | J-STAGE Free; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | logarithmic map retraction Riemannian manifold Riemannian optimization |
title | Approximated logarithmic maps on Riemannian manifolds and their applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T08%3A08%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximated%20logarithmic%20maps%20on%20Riemannian%20manifolds%20and%20their%20applications&rft.jtitle=JSIAM%20Letters&rft.au=Goto,%20Jumpei&rft.date=2021&rft.volume=13&rft.spage=17&rft.epage=20&rft.pages=17-20&rft.issn=1883-0609&rft.eissn=1883-0617&rft_id=info:doi/10.14495/jsiaml.13.17&rft_dat=%3Cjstage_cross%3Earticle_jsiaml_13_0_13_17_article_char_en%3C/jstage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |