Generation of collocation points in the method of fundamental solutions for 2D Laplace's equation

We propose a new method for generating collocation points that give an accurate approximation in the method of fundamental solutions (MFS). It is known that collocation points that maximize the determinant of the coefficient matrix of the linear system in the MFS give an accurate approximation. Howe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JSIAM Letters 2019, Vol.11, pp.49-52
Hauptverfasser: Hirano, Hiroaki, Tanaka, Ken'ichiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 52
container_issue
container_start_page 49
container_title JSIAM Letters
container_volume 11
creator Hirano, Hiroaki
Tanaka, Ken'ichiro
description We propose a new method for generating collocation points that give an accurate approximation in the method of fundamental solutions (MFS). It is known that collocation points that maximize the determinant of the coefficient matrix of the linear system in the MFS give an accurate approximation. However, the maximization problem is intractable. We design an efficient algorithm to automatically take collocation points that do not depend on a boundary condition. Numerical experiments show that the proposed collocation points give a better condition number and an accurate approximation when we use source points far from the boundary.
doi_str_mv 10.14495/jsiaml.11.49
format Article
fullrecord <record><control><sourceid>jstage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_14495_jsiaml_11_49</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>article_jsiaml_11_0_11_49_article_char_en</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-54037bb4d60453ff8bbc6e5b582f6610998d897fb043dcf64565a5e1c2402403</originalsourceid><addsrcrecordid>eNpNkM1LAzEQxYMoWGqP3nPztGuy-djNSaRqFQpeeg9JNrEp2U1N0oP_vW1XijDwZpjfe4cHwD1GNaZUsMdd9moINcY1FVdghruOVIjj9vqyI3ELFjl7jTBqGBINmQG1sqNNqvg4wuigiSFEM5376MeSoR9h2Vo42LKN_Ylxh7FXgx2LCjDHcDjBGbqYYPMC12oflLEPGdrvwznnDtw4FbJd_OkcbN5eN8v3av25-lg-rytDW1IqRhFptaY9R5QR5zqtDbdMs65xnGMkRNd3onUaUdIbxynjTDGLTUPRccgcVFOsSTHnZJ3cJz-o9CMxkueG5NSQxFhSceSfJn6Xi_qyF1ql4k2w_2A0OS4fs1VJ2pH8AjcPcss</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Generation of collocation points in the method of fundamental solutions for 2D Laplace's equation</title><source>J-STAGE Free</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Hirano, Hiroaki ; Tanaka, Ken'ichiro</creator><creatorcontrib>Hirano, Hiroaki ; Tanaka, Ken'ichiro</creatorcontrib><description>We propose a new method for generating collocation points that give an accurate approximation in the method of fundamental solutions (MFS). It is known that collocation points that maximize the determinant of the coefficient matrix of the linear system in the MFS give an accurate approximation. However, the maximization problem is intractable. We design an efficient algorithm to automatically take collocation points that do not depend on a boundary condition. Numerical experiments show that the proposed collocation points give a better condition number and an accurate approximation when we use source points far from the boundary.</description><identifier>ISSN: 1883-0609</identifier><identifier>EISSN: 1883-0617</identifier><identifier>DOI: 10.14495/jsiaml.11.49</identifier><language>eng</language><publisher>The Japan Society for Industrial and Applied Mathematics</publisher><subject>collocation points ; maximization of a determinant ; method of fundamental solutions ; second-order cone programming</subject><ispartof>JSIAM Letters, 2019, Vol.11, pp.49-52</ispartof><rights>2019, The Japan Society for Industrial and Applied Mathematics</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-54037bb4d60453ff8bbc6e5b582f6610998d897fb043dcf64565a5e1c2402403</citedby><cites>FETCH-LOGICAL-c473t-54037bb4d60453ff8bbc6e5b582f6610998d897fb043dcf64565a5e1c2402403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1876,27903,27904</link.rule.ids></links><search><creatorcontrib>Hirano, Hiroaki</creatorcontrib><creatorcontrib>Tanaka, Ken'ichiro</creatorcontrib><title>Generation of collocation points in the method of fundamental solutions for 2D Laplace's equation</title><title>JSIAM Letters</title><addtitle>JSIAM Letters</addtitle><description>We propose a new method for generating collocation points that give an accurate approximation in the method of fundamental solutions (MFS). It is known that collocation points that maximize the determinant of the coefficient matrix of the linear system in the MFS give an accurate approximation. However, the maximization problem is intractable. We design an efficient algorithm to automatically take collocation points that do not depend on a boundary condition. Numerical experiments show that the proposed collocation points give a better condition number and an accurate approximation when we use source points far from the boundary.</description><subject>collocation points</subject><subject>maximization of a determinant</subject><subject>method of fundamental solutions</subject><subject>second-order cone programming</subject><issn>1883-0609</issn><issn>1883-0617</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkM1LAzEQxYMoWGqP3nPztGuy-djNSaRqFQpeeg9JNrEp2U1N0oP_vW1XijDwZpjfe4cHwD1GNaZUsMdd9moINcY1FVdghruOVIjj9vqyI3ELFjl7jTBqGBINmQG1sqNNqvg4wuigiSFEM5376MeSoR9h2Vo42LKN_Ylxh7FXgx2LCjDHcDjBGbqYYPMC12oflLEPGdrvwznnDtw4FbJd_OkcbN5eN8v3av25-lg-rytDW1IqRhFptaY9R5QR5zqtDbdMs65xnGMkRNd3onUaUdIbxynjTDGLTUPRccgcVFOsSTHnZJ3cJz-o9CMxkueG5NSQxFhSceSfJn6Xi_qyF1ql4k2w_2A0OS4fs1VJ2pH8AjcPcss</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Hirano, Hiroaki</creator><creator>Tanaka, Ken'ichiro</creator><general>The Japan Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190101</creationdate><title>Generation of collocation points in the method of fundamental solutions for 2D Laplace's equation</title><author>Hirano, Hiroaki ; Tanaka, Ken'ichiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-54037bb4d60453ff8bbc6e5b582f6610998d897fb043dcf64565a5e1c2402403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>collocation points</topic><topic>maximization of a determinant</topic><topic>method of fundamental solutions</topic><topic>second-order cone programming</topic><toplevel>online_resources</toplevel><creatorcontrib>Hirano, Hiroaki</creatorcontrib><creatorcontrib>Tanaka, Ken'ichiro</creatorcontrib><collection>CrossRef</collection><jtitle>JSIAM Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hirano, Hiroaki</au><au>Tanaka, Ken'ichiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generation of collocation points in the method of fundamental solutions for 2D Laplace's equation</atitle><jtitle>JSIAM Letters</jtitle><addtitle>JSIAM Letters</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>11</volume><spage>49</spage><epage>52</epage><pages>49-52</pages><issn>1883-0609</issn><eissn>1883-0617</eissn><abstract>We propose a new method for generating collocation points that give an accurate approximation in the method of fundamental solutions (MFS). It is known that collocation points that maximize the determinant of the coefficient matrix of the linear system in the MFS give an accurate approximation. However, the maximization problem is intractable. We design an efficient algorithm to automatically take collocation points that do not depend on a boundary condition. Numerical experiments show that the proposed collocation points give a better condition number and an accurate approximation when we use source points far from the boundary.</abstract><pub>The Japan Society for Industrial and Applied Mathematics</pub><doi>10.14495/jsiaml.11.49</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1883-0609
ispartof JSIAM Letters, 2019, Vol.11, pp.49-52
issn 1883-0609
1883-0617
language eng
recordid cdi_crossref_primary_10_14495_jsiaml_11_49
source J-STAGE Free; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects collocation points
maximization of a determinant
method of fundamental solutions
second-order cone programming
title Generation of collocation points in the method of fundamental solutions for 2D Laplace's equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T19%3A04%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generation%20of%20collocation%20points%20in%20the%20method%20of%20fundamental%20solutions%20for%202D%20Laplace's%20equation&rft.jtitle=JSIAM%20Letters&rft.au=Hirano,%20Hiroaki&rft.date=2019-01-01&rft.volume=11&rft.spage=49&rft.epage=52&rft.pages=49-52&rft.issn=1883-0609&rft.eissn=1883-0617&rft_id=info:doi/10.14495/jsiaml.11.49&rft_dat=%3Cjstage_cross%3Earticle_jsiaml_11_0_11_49_article_char_en%3C/jstage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true