Generation of collocation points in the method of fundamental solutions for 2D Laplace's equation
We propose a new method for generating collocation points that give an accurate approximation in the method of fundamental solutions (MFS). It is known that collocation points that maximize the determinant of the coefficient matrix of the linear system in the MFS give an accurate approximation. Howe...
Gespeichert in:
Veröffentlicht in: | JSIAM Letters 2019, Vol.11, pp.49-52 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 52 |
---|---|
container_issue | |
container_start_page | 49 |
container_title | JSIAM Letters |
container_volume | 11 |
creator | Hirano, Hiroaki Tanaka, Ken'ichiro |
description | We propose a new method for generating collocation points that give an accurate approximation in the method of fundamental solutions (MFS). It is known that collocation points that maximize the determinant of the coefficient matrix of the linear system in the MFS give an accurate approximation. However, the maximization problem is intractable. We design an efficient algorithm to automatically take collocation points that do not depend on a boundary condition. Numerical experiments show that the proposed collocation points give a better condition number and an accurate approximation when we use source points far from the boundary. |
doi_str_mv | 10.14495/jsiaml.11.49 |
format | Article |
fullrecord | <record><control><sourceid>jstage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_14495_jsiaml_11_49</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>article_jsiaml_11_0_11_49_article_char_en</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-54037bb4d60453ff8bbc6e5b582f6610998d897fb043dcf64565a5e1c2402403</originalsourceid><addsrcrecordid>eNpNkM1LAzEQxYMoWGqP3nPztGuy-djNSaRqFQpeeg9JNrEp2U1N0oP_vW1XijDwZpjfe4cHwD1GNaZUsMdd9moINcY1FVdghruOVIjj9vqyI3ELFjl7jTBqGBINmQG1sqNNqvg4wuigiSFEM5376MeSoR9h2Vo42LKN_Ylxh7FXgx2LCjDHcDjBGbqYYPMC12oflLEPGdrvwznnDtw4FbJd_OkcbN5eN8v3av25-lg-rytDW1IqRhFptaY9R5QR5zqtDbdMs65xnGMkRNd3onUaUdIbxynjTDGLTUPRccgcVFOsSTHnZJ3cJz-o9CMxkueG5NSQxFhSceSfJn6Xi_qyF1ql4k2w_2A0OS4fs1VJ2pH8AjcPcss</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Generation of collocation points in the method of fundamental solutions for 2D Laplace's equation</title><source>J-STAGE Free</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Hirano, Hiroaki ; Tanaka, Ken'ichiro</creator><creatorcontrib>Hirano, Hiroaki ; Tanaka, Ken'ichiro</creatorcontrib><description>We propose a new method for generating collocation points that give an accurate approximation in the method of fundamental solutions (MFS). It is known that collocation points that maximize the determinant of the coefficient matrix of the linear system in the MFS give an accurate approximation. However, the maximization problem is intractable. We design an efficient algorithm to automatically take collocation points that do not depend on a boundary condition. Numerical experiments show that the proposed collocation points give a better condition number and an accurate approximation when we use source points far from the boundary.</description><identifier>ISSN: 1883-0609</identifier><identifier>EISSN: 1883-0617</identifier><identifier>DOI: 10.14495/jsiaml.11.49</identifier><language>eng</language><publisher>The Japan Society for Industrial and Applied Mathematics</publisher><subject>collocation points ; maximization of a determinant ; method of fundamental solutions ; second-order cone programming</subject><ispartof>JSIAM Letters, 2019, Vol.11, pp.49-52</ispartof><rights>2019, The Japan Society for Industrial and Applied Mathematics</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-54037bb4d60453ff8bbc6e5b582f6610998d897fb043dcf64565a5e1c2402403</citedby><cites>FETCH-LOGICAL-c473t-54037bb4d60453ff8bbc6e5b582f6610998d897fb043dcf64565a5e1c2402403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1876,27903,27904</link.rule.ids></links><search><creatorcontrib>Hirano, Hiroaki</creatorcontrib><creatorcontrib>Tanaka, Ken'ichiro</creatorcontrib><title>Generation of collocation points in the method of fundamental solutions for 2D Laplace's equation</title><title>JSIAM Letters</title><addtitle>JSIAM Letters</addtitle><description>We propose a new method for generating collocation points that give an accurate approximation in the method of fundamental solutions (MFS). It is known that collocation points that maximize the determinant of the coefficient matrix of the linear system in the MFS give an accurate approximation. However, the maximization problem is intractable. We design an efficient algorithm to automatically take collocation points that do not depend on a boundary condition. Numerical experiments show that the proposed collocation points give a better condition number and an accurate approximation when we use source points far from the boundary.</description><subject>collocation points</subject><subject>maximization of a determinant</subject><subject>method of fundamental solutions</subject><subject>second-order cone programming</subject><issn>1883-0609</issn><issn>1883-0617</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkM1LAzEQxYMoWGqP3nPztGuy-djNSaRqFQpeeg9JNrEp2U1N0oP_vW1XijDwZpjfe4cHwD1GNaZUsMdd9moINcY1FVdghruOVIjj9vqyI3ELFjl7jTBqGBINmQG1sqNNqvg4wuigiSFEM5376MeSoR9h2Vo42LKN_Ylxh7FXgx2LCjDHcDjBGbqYYPMC12oflLEPGdrvwznnDtw4FbJd_OkcbN5eN8v3av25-lg-rytDW1IqRhFptaY9R5QR5zqtDbdMs65xnGMkRNd3onUaUdIbxynjTDGLTUPRccgcVFOsSTHnZJ3cJz-o9CMxkueG5NSQxFhSceSfJn6Xi_qyF1ql4k2w_2A0OS4fs1VJ2pH8AjcPcss</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Hirano, Hiroaki</creator><creator>Tanaka, Ken'ichiro</creator><general>The Japan Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190101</creationdate><title>Generation of collocation points in the method of fundamental solutions for 2D Laplace's equation</title><author>Hirano, Hiroaki ; Tanaka, Ken'ichiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-54037bb4d60453ff8bbc6e5b582f6610998d897fb043dcf64565a5e1c2402403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>collocation points</topic><topic>maximization of a determinant</topic><topic>method of fundamental solutions</topic><topic>second-order cone programming</topic><toplevel>online_resources</toplevel><creatorcontrib>Hirano, Hiroaki</creatorcontrib><creatorcontrib>Tanaka, Ken'ichiro</creatorcontrib><collection>CrossRef</collection><jtitle>JSIAM Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hirano, Hiroaki</au><au>Tanaka, Ken'ichiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generation of collocation points in the method of fundamental solutions for 2D Laplace's equation</atitle><jtitle>JSIAM Letters</jtitle><addtitle>JSIAM Letters</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>11</volume><spage>49</spage><epage>52</epage><pages>49-52</pages><issn>1883-0609</issn><eissn>1883-0617</eissn><abstract>We propose a new method for generating collocation points that give an accurate approximation in the method of fundamental solutions (MFS). It is known that collocation points that maximize the determinant of the coefficient matrix of the linear system in the MFS give an accurate approximation. However, the maximization problem is intractable. We design an efficient algorithm to automatically take collocation points that do not depend on a boundary condition. Numerical experiments show that the proposed collocation points give a better condition number and an accurate approximation when we use source points far from the boundary.</abstract><pub>The Japan Society for Industrial and Applied Mathematics</pub><doi>10.14495/jsiaml.11.49</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1883-0609 |
ispartof | JSIAM Letters, 2019, Vol.11, pp.49-52 |
issn | 1883-0609 1883-0617 |
language | eng |
recordid | cdi_crossref_primary_10_14495_jsiaml_11_49 |
source | J-STAGE Free; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | collocation points maximization of a determinant method of fundamental solutions second-order cone programming |
title | Generation of collocation points in the method of fundamental solutions for 2D Laplace's equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T19%3A04%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generation%20of%20collocation%20points%20in%20the%20method%20of%20fundamental%20solutions%20for%202D%20Laplace's%20equation&rft.jtitle=JSIAM%20Letters&rft.au=Hirano,%20Hiroaki&rft.date=2019-01-01&rft.volume=11&rft.spage=49&rft.epage=52&rft.pages=49-52&rft.issn=1883-0609&rft.eissn=1883-0617&rft_id=info:doi/10.14495/jsiaml.11.49&rft_dat=%3Cjstage_cross%3Earticle_jsiaml_11_0_11_49_article_char_en%3C/jstage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |