Accurate Estimation of PEMFC State of Health using Modified Hybrid Artificial Neural Network Models

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of new materials for electrochemical systems 2023-01, Vol.26 (1), p.32-41
Hauptverfasser: Kahia, Hichem, Saadi, Aicha, Herbadji, Abderrahmane, Herbadji, Djamel, Ramadhan, Haitham Mohamed
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 41
container_issue 1
container_start_page 32
container_title Journal of new materials for electrochemical systems
container_volume 26
creator Kahia, Hichem
Saadi, Aicha
Herbadji, Abderrahmane
Herbadji, Djamel
Ramadhan, Haitham Mohamed
description
doi_str_mv 10.14447/jnmes.v26i1.a05
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_14447_jnmes_v26i1_a05</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_14447_jnmes_v26i1_a05</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-7f9959aaffbf4b4c548f343f640e23ae0cf1e020d6bff641df86ef9145e960a93</originalsourceid><addsrcrecordid>eNotkMFOwzAQRC0EElHpnaN_IMV2nDQ-RlFLkFpAAs6R4-yCS9og2wX173EKexnN7mqkeYTccrbgUsrl3e6wB7_4FoXlC83yC5IIoUTKeVFekoTLkqVCCnFN5t7vWJxS5IqLhJjKmKPTAejKB7vXwY4HOiJ9Xm3XNX0J0yXaBvQQPujR28M73Y69RQs9bU6dsz2tXIjeWD3QR4hhk4Sf0X1OnzD4G3KFevAw_9cZeVuvXusm3TzdP9TVJjWizEO6RKVypTVih7KTJpclZjLDQjIQmQZmkAMTrC86jEveY1kAKi5zUAXTKpsR9pdr3Oi9A2y_XKzkTi1n7ZlTe-bUnjm1kVP2C2HfXm4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Accurate Estimation of PEMFC State of Health using Modified Hybrid Artificial Neural Network Models</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kahia, Hichem ; Saadi, Aicha ; Herbadji, Abderrahmane ; Herbadji, Djamel ; Ramadhan, Haitham Mohamed</creator><creatorcontrib>Kahia, Hichem ; Saadi, Aicha ; Herbadji, Abderrahmane ; Herbadji, Djamel ; Ramadhan, Haitham Mohamed</creatorcontrib><identifier>ISSN: 1480-2422</identifier><identifier>EISSN: 2292-1168</identifier><identifier>DOI: 10.14447/jnmes.v26i1.a05</identifier><language>eng</language><ispartof>Journal of new materials for electrochemical systems, 2023-01, Vol.26 (1), p.32-41</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c285t-7f9959aaffbf4b4c548f343f640e23ae0cf1e020d6bff641df86ef9145e960a93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kahia, Hichem</creatorcontrib><creatorcontrib>Saadi, Aicha</creatorcontrib><creatorcontrib>Herbadji, Abderrahmane</creatorcontrib><creatorcontrib>Herbadji, Djamel</creatorcontrib><creatorcontrib>Ramadhan, Haitham Mohamed</creatorcontrib><title>Accurate Estimation of PEMFC State of Health using Modified Hybrid Artificial Neural Network Models</title><title>Journal of new materials for electrochemical systems</title><issn>1480-2422</issn><issn>2292-1168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkMFOwzAQRC0EElHpnaN_IMV2nDQ-RlFLkFpAAs6R4-yCS9og2wX173EKexnN7mqkeYTccrbgUsrl3e6wB7_4FoXlC83yC5IIoUTKeVFekoTLkqVCCnFN5t7vWJxS5IqLhJjKmKPTAejKB7vXwY4HOiJ9Xm3XNX0J0yXaBvQQPujR28M73Y69RQs9bU6dsz2tXIjeWD3QR4hhk4Sf0X1OnzD4G3KFevAw_9cZeVuvXusm3TzdP9TVJjWizEO6RKVypTVih7KTJpclZjLDQjIQmQZmkAMTrC86jEveY1kAKi5zUAXTKpsR9pdr3Oi9A2y_XKzkTi1n7ZlTe-bUnjm1kVP2C2HfXm4</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Kahia, Hichem</creator><creator>Saadi, Aicha</creator><creator>Herbadji, Abderrahmane</creator><creator>Herbadji, Djamel</creator><creator>Ramadhan, Haitham Mohamed</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230101</creationdate><title>Accurate Estimation of PEMFC State of Health using Modified Hybrid Artificial Neural Network Models</title><author>Kahia, Hichem ; Saadi, Aicha ; Herbadji, Abderrahmane ; Herbadji, Djamel ; Ramadhan, Haitham Mohamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-7f9959aaffbf4b4c548f343f640e23ae0cf1e020d6bff641df86ef9145e960a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kahia, Hichem</creatorcontrib><creatorcontrib>Saadi, Aicha</creatorcontrib><creatorcontrib>Herbadji, Abderrahmane</creatorcontrib><creatorcontrib>Herbadji, Djamel</creatorcontrib><creatorcontrib>Ramadhan, Haitham Mohamed</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of new materials for electrochemical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kahia, Hichem</au><au>Saadi, Aicha</au><au>Herbadji, Abderrahmane</au><au>Herbadji, Djamel</au><au>Ramadhan, Haitham Mohamed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate Estimation of PEMFC State of Health using Modified Hybrid Artificial Neural Network Models</atitle><jtitle>Journal of new materials for electrochemical systems</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>26</volume><issue>1</issue><spage>32</spage><epage>41</epage><pages>32-41</pages><issn>1480-2422</issn><eissn>2292-1168</eissn><doi>10.14447/jnmes.v26i1.a05</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1480-2422
ispartof Journal of new materials for electrochemical systems, 2023-01, Vol.26 (1), p.32-41
issn 1480-2422
2292-1168
language eng
recordid cdi_crossref_primary_10_14447_jnmes_v26i1_a05
source EZB-FREE-00999 freely available EZB journals
title Accurate Estimation of PEMFC State of Health using Modified Hybrid Artificial Neural Network Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A59%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20Estimation%20of%20PEMFC%20State%20of%20Health%20using%20Modified%20Hybrid%20Artificial%20Neural%20Network%20Models&rft.jtitle=Journal%20of%20new%20materials%20for%20electrochemical%20systems&rft.au=Kahia,%20Hichem&rft.date=2023-01-01&rft.volume=26&rft.issue=1&rft.spage=32&rft.epage=41&rft.pages=32-41&rft.issn=1480-2422&rft.eissn=2292-1168&rft_id=info:doi/10.14447/jnmes.v26i1.a05&rft_dat=%3Ccrossref%3E10_14447_jnmes_v26i1_a05%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true