Neural Network based Diagnostic of PEM Fuel Cell
This paper focuses in finding a suitable, effective, and easy to use method, to avoid the frequent mistakes that are presented by the poor flow of water inside the fuel cell during its operation. Towards this aim, the artificial intelligence technology is proposed. More specifically, a neural networ...
Gespeichert in:
Veröffentlicht in: | Journal of new materials for electrochemical systems 2020-12, Vol.23 (4), p.225-234 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 234 |
---|---|
container_issue | 4 |
container_start_page | 225 |
container_title | Journal of new materials for electrochemical systems |
container_volume | 23 |
creator | Kahia, Hichem Aicha, Saadi Herbadji, Djamel Herbadji, Abderrahmane Bedda, Said |
description | This paper focuses in finding a suitable, effective, and easy to use method, to avoid the frequent mistakes that are presented by the poor flow of water inside the fuel cell during its operation. Towards this aim, the artificial intelligence technology is proposed. More specifically, a neural network model is used to enable monitoring the influence of the humidity content of the fuel cell membrane, through employing electrochemical impedance spectroscopy method (EIS analysis). This technique allows analyzing and diagnosing PEM fuel cell failure modes (flooding & drying). The benefit of this work is summed up in the demonstration of the existence in a simple way that helps to define the state of health of the PEMFC. |
doi_str_mv | 10.14447/jnmes.v23i4.a02 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_14447_jnmes_v23i4_a02</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_14447_jnmes_v23i4_a02</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-5dab94d3fad186dd7c3d90044af98d0ecbe1d815cb13419eabe6c570a704480a3</originalsourceid><addsrcrecordid>eNotzzFPwzAUBGALgURUujP6DyS8ZzuJPaLSAlIpDDBbjv2CUtIG2SmIf08UuOWW00kfY9cIBSql6pv98UCp-BKyU4UDccYyIYzIESt9zjJUGnKhhLhky5T2MEWL0qDIGOzoFF3PdzR-D_GDNy5R4Hedez8Oaew8H1r-sn7imxP1fEV9f8UuWtcnWv73gr1t1q-rh3z7fP-4ut3mXuhyzMvgGqOCbF1AXYVQexkMgFKuNToA-YYwaCx9g1KhIddQ5csaXD1tNDi5YPD36-OQUqTWfsbu4OKPRbAz2s5oO6PthJa_8KhLkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Neural Network based Diagnostic of PEM Fuel Cell</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kahia, Hichem ; Aicha, Saadi ; Herbadji, Djamel ; Herbadji, Abderrahmane ; Bedda, Said</creator><creatorcontrib>Kahia, Hichem ; Aicha, Saadi ; Herbadji, Djamel ; Herbadji, Abderrahmane ; Bedda, Said</creatorcontrib><description>This paper focuses in finding a suitable, effective, and easy to use method, to avoid the frequent mistakes that are presented by the poor flow of water inside the fuel cell during its operation. Towards this aim, the artificial intelligence technology is proposed. More specifically, a neural network model is used to enable monitoring the influence of the humidity content of the fuel cell membrane, through employing electrochemical impedance spectroscopy method (EIS analysis). This technique allows analyzing and diagnosing PEM fuel cell failure modes (flooding & drying). The benefit of this work is summed up in the demonstration of the existence in a simple way that helps to define the state of health of the PEMFC.</description><identifier>ISSN: 1480-2422</identifier><identifier>EISSN: 2292-1168</identifier><identifier>DOI: 10.14447/jnmes.v23i4.a02</identifier><language>eng</language><ispartof>Journal of new materials for electrochemical systems, 2020-12, Vol.23 (4), p.225-234</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c285t-5dab94d3fad186dd7c3d90044af98d0ecbe1d815cb13419eabe6c570a704480a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Kahia, Hichem</creatorcontrib><creatorcontrib>Aicha, Saadi</creatorcontrib><creatorcontrib>Herbadji, Djamel</creatorcontrib><creatorcontrib>Herbadji, Abderrahmane</creatorcontrib><creatorcontrib>Bedda, Said</creatorcontrib><title>Neural Network based Diagnostic of PEM Fuel Cell</title><title>Journal of new materials for electrochemical systems</title><description>This paper focuses in finding a suitable, effective, and easy to use method, to avoid the frequent mistakes that are presented by the poor flow of water inside the fuel cell during its operation. Towards this aim, the artificial intelligence technology is proposed. More specifically, a neural network model is used to enable monitoring the influence of the humidity content of the fuel cell membrane, through employing electrochemical impedance spectroscopy method (EIS analysis). This technique allows analyzing and diagnosing PEM fuel cell failure modes (flooding & drying). The benefit of this work is summed up in the demonstration of the existence in a simple way that helps to define the state of health of the PEMFC.</description><issn>1480-2422</issn><issn>2292-1168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotzzFPwzAUBGALgURUujP6DyS8ZzuJPaLSAlIpDDBbjv2CUtIG2SmIf08UuOWW00kfY9cIBSql6pv98UCp-BKyU4UDccYyIYzIESt9zjJUGnKhhLhky5T2MEWL0qDIGOzoFF3PdzR-D_GDNy5R4Hedez8Oaew8H1r-sn7imxP1fEV9f8UuWtcnWv73gr1t1q-rh3z7fP-4ut3mXuhyzMvgGqOCbF1AXYVQexkMgFKuNToA-YYwaCx9g1KhIddQ5csaXD1tNDi5YPD36-OQUqTWfsbu4OKPRbAz2s5oO6PthJa_8KhLkQ</recordid><startdate>20201231</startdate><enddate>20201231</enddate><creator>Kahia, Hichem</creator><creator>Aicha, Saadi</creator><creator>Herbadji, Djamel</creator><creator>Herbadji, Abderrahmane</creator><creator>Bedda, Said</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201231</creationdate><title>Neural Network based Diagnostic of PEM Fuel Cell</title><author>Kahia, Hichem ; Aicha, Saadi ; Herbadji, Djamel ; Herbadji, Abderrahmane ; Bedda, Said</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-5dab94d3fad186dd7c3d90044af98d0ecbe1d815cb13419eabe6c570a704480a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kahia, Hichem</creatorcontrib><creatorcontrib>Aicha, Saadi</creatorcontrib><creatorcontrib>Herbadji, Djamel</creatorcontrib><creatorcontrib>Herbadji, Abderrahmane</creatorcontrib><creatorcontrib>Bedda, Said</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of new materials for electrochemical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kahia, Hichem</au><au>Aicha, Saadi</au><au>Herbadji, Djamel</au><au>Herbadji, Abderrahmane</au><au>Bedda, Said</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural Network based Diagnostic of PEM Fuel Cell</atitle><jtitle>Journal of new materials for electrochemical systems</jtitle><date>2020-12-31</date><risdate>2020</risdate><volume>23</volume><issue>4</issue><spage>225</spage><epage>234</epage><pages>225-234</pages><issn>1480-2422</issn><eissn>2292-1168</eissn><abstract>This paper focuses in finding a suitable, effective, and easy to use method, to avoid the frequent mistakes that are presented by the poor flow of water inside the fuel cell during its operation. Towards this aim, the artificial intelligence technology is proposed. More specifically, a neural network model is used to enable monitoring the influence of the humidity content of the fuel cell membrane, through employing electrochemical impedance spectroscopy method (EIS analysis). This technique allows analyzing and diagnosing PEM fuel cell failure modes (flooding & drying). The benefit of this work is summed up in the demonstration of the existence in a simple way that helps to define the state of health of the PEMFC.</abstract><doi>10.14447/jnmes.v23i4.a02</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1480-2422 |
ispartof | Journal of new materials for electrochemical systems, 2020-12, Vol.23 (4), p.225-234 |
issn | 1480-2422 2292-1168 |
language | eng |
recordid | cdi_crossref_primary_10_14447_jnmes_v23i4_a02 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Neural Network based Diagnostic of PEM Fuel Cell |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T06%3A34%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20Network%20based%20Diagnostic%20of%20PEM%20Fuel%20Cell&rft.jtitle=Journal%20of%20new%20materials%20for%20electrochemical%20systems&rft.au=Kahia,%20Hichem&rft.date=2020-12-31&rft.volume=23&rft.issue=4&rft.spage=225&rft.epage=234&rft.pages=225-234&rft.issn=1480-2422&rft.eissn=2292-1168&rft_id=info:doi/10.14447/jnmes.v23i4.a02&rft_dat=%3Ccrossref%3E10_14447_jnmes_v23i4_a02%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |