Quasi-E-Bayesian criteria versus quasi-Bayesian, quasi-hierarchical Bayesian and quasi-empirical Bayesian methods for estimating the scale parameter of the Erlang distribution
This paper proposes a new modification for the E-Bayesian method of estimation to introduce a new technique namely Quasi E-Bayesian method (or briefly QE-Bayesian). The suggested criteria built in replacing the likelihood function by the quasi likelihood function in the E-Bayesian technique. This st...
Gespeichert in:
Veröffentlicht in: | International journal of advanced statistics and probability 2016-05, Vol.4 (1), p.62-74 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 74 |
---|---|
container_issue | 1 |
container_start_page | 62 |
container_title | International journal of advanced statistics and probability |
container_volume | 4 |
creator | Reyad, Hesham Younis, Adil Alkhedir, Amal |
description | This paper proposes a new modification for the E-Bayesian method of estimation to introduce a new technique namely Quasi E-Bayesian method (or briefly QE-Bayesian). The suggested criteria built in replacing the likelihood function by the quasi likelihood function in the E-Bayesian technique. This study is devoted to evaluate the performance of the new method versus the quasi-Bayesian, quasi-hierarchical Bayesian and quasi-empirical Bayesian approaches in estimating the scale parameter of the Erlang distribution. All estimators are obtained under symmetric loss function [squared error loss (SELF))] and four different asymmetric loss functions [Precautionary loss function (PLF), entropy loss function (ELF), Degroot loss function (DLF) and quadratic loss function (QLF)]. The properties of the QE-Bayesian estimates are introduced and the relations between the QE-Bayes and quasi-hierarchical Bayes estimates are discussed. Comparisons among all estimators are performed in terms of mean square error (MSE) via Monte Carlo simulation. |
doi_str_mv | 10.14419/ijasp.v4i1.6095 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_14419_ijasp_v4i1_6095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_14419_ijasp_v4i1_6095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c885-ebe853794e50721dc66f7b3142c6c44b6605fe1e2e23dbad0cb712c29a624b603</originalsourceid><addsrcrecordid>eNpVkFFLwzAQx4MoOObefcwHsDNJ03R51DGdMBBh7-WaXm3G1tZLN9in8iva1Sn6lMv9fnccf8ZupZhKraW99xsI7fSgvZwaYZMLNlKxSCMrdHL5p75mkxA2QggZa2msHbHPtz0EHy2iRzhi8FBzR75D8sAPSGEf-Mcg_OC787_ySECu8g62_HcW6uLMcdd6-g932FVNEXjZEMfQ-R10vn7nXYU89CLyFgh6CYk35dBe0BZ6o_ChI5_vO9_UN-yqhG3Ayfkds_XTYj1fRqvX55f5wypys1kSYY6zJE6txkSkShbOmDLNY6mVM07r3BiRlChRoYqLHArh8lQqpywY1VMRj5n4XuuoCYGwzFrqD6ZjJkU2RJ4NkWenyLNT5PEXd3x7GA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quasi-E-Bayesian criteria versus quasi-Bayesian, quasi-hierarchical Bayesian and quasi-empirical Bayesian methods for estimating the scale parameter of the Erlang distribution</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Reyad, Hesham ; Younis, Adil ; Alkhedir, Amal</creator><creatorcontrib>Reyad, Hesham ; Younis, Adil ; Alkhedir, Amal</creatorcontrib><description>This paper proposes a new modification for the E-Bayesian method of estimation to introduce a new technique namely Quasi E-Bayesian method (or briefly QE-Bayesian). The suggested criteria built in replacing the likelihood function by the quasi likelihood function in the E-Bayesian technique. This study is devoted to evaluate the performance of the new method versus the quasi-Bayesian, quasi-hierarchical Bayesian and quasi-empirical Bayesian approaches in estimating the scale parameter of the Erlang distribution. All estimators are obtained under symmetric loss function [squared error loss (SELF))] and four different asymmetric loss functions [Precautionary loss function (PLF), entropy loss function (ELF), Degroot loss function (DLF) and quadratic loss function (QLF)]. The properties of the QE-Bayesian estimates are introduced and the relations between the QE-Bayes and quasi-hierarchical Bayes estimates are discussed. Comparisons among all estimators are performed in terms of mean square error (MSE) via Monte Carlo simulation.</description><identifier>ISSN: 2307-9045</identifier><identifier>EISSN: 2307-9045</identifier><identifier>DOI: 10.14419/ijasp.v4i1.6095</identifier><language>eng</language><ispartof>International journal of advanced statistics and probability, 2016-05, Vol.4 (1), p.62-74</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c885-ebe853794e50721dc66f7b3142c6c44b6605fe1e2e23dbad0cb712c29a624b603</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Reyad, Hesham</creatorcontrib><creatorcontrib>Younis, Adil</creatorcontrib><creatorcontrib>Alkhedir, Amal</creatorcontrib><title>Quasi-E-Bayesian criteria versus quasi-Bayesian, quasi-hierarchical Bayesian and quasi-empirical Bayesian methods for estimating the scale parameter of the Erlang distribution</title><title>International journal of advanced statistics and probability</title><description>This paper proposes a new modification for the E-Bayesian method of estimation to introduce a new technique namely Quasi E-Bayesian method (or briefly QE-Bayesian). The suggested criteria built in replacing the likelihood function by the quasi likelihood function in the E-Bayesian technique. This study is devoted to evaluate the performance of the new method versus the quasi-Bayesian, quasi-hierarchical Bayesian and quasi-empirical Bayesian approaches in estimating the scale parameter of the Erlang distribution. All estimators are obtained under symmetric loss function [squared error loss (SELF))] and four different asymmetric loss functions [Precautionary loss function (PLF), entropy loss function (ELF), Degroot loss function (DLF) and quadratic loss function (QLF)]. The properties of the QE-Bayesian estimates are introduced and the relations between the QE-Bayes and quasi-hierarchical Bayes estimates are discussed. Comparisons among all estimators are performed in terms of mean square error (MSE) via Monte Carlo simulation.</description><issn>2307-9045</issn><issn>2307-9045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpVkFFLwzAQx4MoOObefcwHsDNJ03R51DGdMBBh7-WaXm3G1tZLN9in8iva1Sn6lMv9fnccf8ZupZhKraW99xsI7fSgvZwaYZMLNlKxSCMrdHL5p75mkxA2QggZa2msHbHPtz0EHy2iRzhi8FBzR75D8sAPSGEf-Mcg_OC787_ySECu8g62_HcW6uLMcdd6-g932FVNEXjZEMfQ-R10vn7nXYU89CLyFgh6CYk35dBe0BZ6o_ChI5_vO9_UN-yqhG3Ayfkds_XTYj1fRqvX55f5wypys1kSYY6zJE6txkSkShbOmDLNY6mVM07r3BiRlChRoYqLHArh8lQqpywY1VMRj5n4XuuoCYGwzFrqD6ZjJkU2RJ4NkWenyLNT5PEXd3x7GA</recordid><startdate>20160510</startdate><enddate>20160510</enddate><creator>Reyad, Hesham</creator><creator>Younis, Adil</creator><creator>Alkhedir, Amal</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160510</creationdate><title>Quasi-E-Bayesian criteria versus quasi-Bayesian, quasi-hierarchical Bayesian and quasi-empirical Bayesian methods for estimating the scale parameter of the Erlang distribution</title><author>Reyad, Hesham ; Younis, Adil ; Alkhedir, Amal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c885-ebe853794e50721dc66f7b3142c6c44b6605fe1e2e23dbad0cb712c29a624b603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Reyad, Hesham</creatorcontrib><creatorcontrib>Younis, Adil</creatorcontrib><creatorcontrib>Alkhedir, Amal</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of advanced statistics and probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reyad, Hesham</au><au>Younis, Adil</au><au>Alkhedir, Amal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quasi-E-Bayesian criteria versus quasi-Bayesian, quasi-hierarchical Bayesian and quasi-empirical Bayesian methods for estimating the scale parameter of the Erlang distribution</atitle><jtitle>International journal of advanced statistics and probability</jtitle><date>2016-05-10</date><risdate>2016</risdate><volume>4</volume><issue>1</issue><spage>62</spage><epage>74</epage><pages>62-74</pages><issn>2307-9045</issn><eissn>2307-9045</eissn><abstract>This paper proposes a new modification for the E-Bayesian method of estimation to introduce a new technique namely Quasi E-Bayesian method (or briefly QE-Bayesian). The suggested criteria built in replacing the likelihood function by the quasi likelihood function in the E-Bayesian technique. This study is devoted to evaluate the performance of the new method versus the quasi-Bayesian, quasi-hierarchical Bayesian and quasi-empirical Bayesian approaches in estimating the scale parameter of the Erlang distribution. All estimators are obtained under symmetric loss function [squared error loss (SELF))] and four different asymmetric loss functions [Precautionary loss function (PLF), entropy loss function (ELF), Degroot loss function (DLF) and quadratic loss function (QLF)]. The properties of the QE-Bayesian estimates are introduced and the relations between the QE-Bayes and quasi-hierarchical Bayes estimates are discussed. Comparisons among all estimators are performed in terms of mean square error (MSE) via Monte Carlo simulation.</abstract><doi>10.14419/ijasp.v4i1.6095</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2307-9045 |
ispartof | International journal of advanced statistics and probability, 2016-05, Vol.4 (1), p.62-74 |
issn | 2307-9045 2307-9045 |
language | eng |
recordid | cdi_crossref_primary_10_14419_ijasp_v4i1_6095 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Quasi-E-Bayesian criteria versus quasi-Bayesian, quasi-hierarchical Bayesian and quasi-empirical Bayesian methods for estimating the scale parameter of the Erlang distribution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T17%3A50%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quasi-E-Bayesian%20criteria%20versus%20quasi-Bayesian,%20quasi-hierarchical%20Bayesian%20and%20quasi-empirical%20Bayesian%20methods%20for%20estimating%20the%20scale%20parameter%20of%20the%20Erlang%20distribution&rft.jtitle=International%20journal%20of%20advanced%20statistics%20and%20probability&rft.au=Reyad,%20Hesham&rft.date=2016-05-10&rft.volume=4&rft.issue=1&rft.spage=62&rft.epage=74&rft.pages=62-74&rft.issn=2307-9045&rft.eissn=2307-9045&rft_id=info:doi/10.14419/ijasp.v4i1.6095&rft_dat=%3Ccrossref%3E10_14419_ijasp_v4i1_6095%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |